相关习题
 0  231874  231882  231888  231892  231898  231900  231904  231910  231912  231918  231924  231928  231930  231934  231940  231942  231948  231952  231954  231958  231960  231964  231966  231968  231969  231970  231972  231973  231974  231976  231978  231982  231984  231988  231990  231994  232000  232002  232008  232012  232014  232018  232024  232030  232032  232038  232042  232044  232050  232054  232060  232068  266669 

科目: 来源: 题型:选择题

10.已知函数f(x)=$\sqrt{4+{x^2}}$,则?x1,x2∈R,x1≠x2,$\frac{{|f({x_1})-f({x_2})|}}{{|{x_1}-{x_2}|}}$的取值范围是(  )
A.[0,+∞)B.[0,1]C.(0,1)D.[0,1)

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知sinα=$\frac{4}{5}$,且α为锐角,则cos$\frac{α}{2}$=(  )
A.$\frac{{\sqrt{5}}}{5}$B.$\frac{{2\sqrt{5}}}{5}$C.$\frac{{3\sqrt{5}}}{5}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知a,b∈R,则“a>b”是“a-3<b-3”的(  )
A.充分不必要条件B.必要不充分条件
C.既不充分也不必要D.充要条件

查看答案和解析>>

科目: 来源: 题型:选择题

7.已知复数z=m2-1+(m+1)i(其中m∈R,i是虚数单位)是纯虚数,则复数m+i的共轭复数是(  )
A.1+iB.1-iC.-1-iD.-i

查看答案和解析>>

科目: 来源: 题型:解答题

6.国内某大学有男生6000人,女生4000人,该校想了解本校学生的运动状况,根据性别采取分层抽样的方法从全校学生中抽取100人,调查他们平均每天运动的时间(单位:小时),统计表明该校学生平均每天运动的时间范围是[0,3],若规定平均每天运动的时间不少于2小时的学生为“运动达人”,低于2小时的学生为“非运动达人”.根据调查的数据按性别与“是否为‘运动达人’”进行统计,得到如下2×2列联表:
运动时间
性别
运动达人非运动达人合计
男生36
女生26
合计100
(1)请根据题目信息,将2×2列联表中的数据补充完整,并通过计算判断能否在犯错误概率不超过0.025的前提下认为性别与“是否为‘运动达人’”有关;
(2)将此样本的频率估计为总体的概率,随机调查该校的3名男生,设调查的3人中运动达人的人数为随机变量X,求X的分布列和数学期望E(X)及方差D(X).
附表及公式:
 P(K2≥k0 0.150.10 0.05 0.025 0.010 
 k0 2.0722.706 3.841  5.0246.635
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知a,b为正实数,则“$\frac{a}{b}$>1”是“aea>beb(e=2.7182…)”的(  )
A.充分不必要条件B.必要不充分条件
C.既不充分也不必要条件D.充分必要条件

查看答案和解析>>

科目: 来源: 题型:选择题

4.如图,棱长为1的正方体ABCD-A1B1C1D1中,M为线段A1B上的动点,则下列结论正确的有(  )
①三棱锥M-DCC1的体积为定值    ②DC1⊥D1M
③∠AMD1的最大值为90°   ④AM+MD1的最小值为2.
A.①②B.①②③C.③④D.②③④

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图,在直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{2\sqrt{2}}{3}$,经过椭圆的左顶点A(-3,0)作斜率为k(k≠0)的直线l交椭圆C于点D,交y轴与点E.
(1)求椭圆C的方程; 
(2)已知P为线段AD的中点,OM∥l,并且OM交椭圆C于点M.
(i)是否存在定点Q,对于任意的k(k≠0)都有OP⊥EQ,若存在,求出点Q的坐标;若不存在,请说明理由;
(ii)求$\frac{|AD|+|AE|}{|OM|}$的最小值.

查看答案和解析>>

科目: 来源: 题型:选择题

2.执行如图所示的程序框图,若f(x)=3x2-1,取g=$\frac{1}{5}$则输出的值为(  )
A.$\frac{19}{32}$B.$\frac{9}{16}$C.$\frac{5}{8}$D.$\frac{3}{4}$

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知函数f(x)=|x-1|.
(Ⅰ)解不等式f(x-1)+f(x+3)≥6;
(Ⅱ)若|a|<1,|b|<1,且b≠0,求证:f(ab)>|b|f($\frac{a}{b}$).

查看答案和解析>>

同步练习册答案