相关习题
 0  231974  231982  231988  231992  231998  232000  232004  232010  232012  232018  232024  232028  232030  232034  232040  232042  232048  232052  232054  232058  232060  232064  232066  232068  232069  232070  232072  232073  232074  232076  232078  232082  232084  232088  232090  232094  232100  232102  232108  232112  232114  232118  232124  232130  232132  232138  232142  232144  232150  232154  232160  232168  266669 

科目: 来源: 题型:解答题

6.如图数表:$({\begin{array}{l}{{a_{11}}}&{{a_{12}}}&…&{{a_{1n}}}\\{{a_{21}}}&{{a_{22}}}&…&{{a_{2n}}}\\…&…&…&…\\{{a_{n1}}}&{{a_{n2}}}&…&{{a_{nn}}}\end{array}})$,每一行都是首项为1的等差数列,第m行的公差为dm,且每一列也是等差数列,设第m行的第k项为amk(m,k=1,2,3,…,n,n≥3,n∈N*).
(1)证明:d1,d2,d3成等差数列,并用m,d1,d2表示dm(3≤m≤n);
(2)当d1=1,d2=3时,将数列{dm}分组如下:
(d1),(d2,d3,d4),(d5,d6,d7,d8,d9),…(每组数的个数构成等差数列).设前m组中所有数之和为${({c_m})^4}({c_m}>0)$,求数列$\{{2^{c_m}}{d_m}\}$的前n项和Sn
(3)在(2)的条件下,设N是不超过20的正整数,当n>N时,求使得不等式$\frac{1}{50}({S_n}-6)>{d_n}$恒成立的所有N的值.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知向量$\overrightarrow a=(\frac{1}{2},\;\frac{1}{2}sinx+\frac{{\sqrt{3}}}{2}cosx)$和向量$\overrightarrow b=(1,f(x))$,且$\overrightarrow a∥\overrightarrow b$.
(1)求函数f(x)的最小正周期和最大值;
(2)已知△ABC的三个内角分别为A,B,C,若有$f(2A-\frac{π}{6})$=1,$BC=\sqrt{7}$,$sinB=\frac{{\sqrt{21}}}{7}$,求AC的长度.

查看答案和解析>>

科目: 来源: 题型:填空题

4.关于x的方程:4x•|4x-2|=3的解为x=log43.

查看答案和解析>>

科目: 来源: 题型:解答题

3.某地拟模仿图(1)建造一座大型体育馆,其设计方案侧面的外轮廓线如图(2)所示:曲线AB是以点E为圆心的圆的一部分,其中E(0,t)曲线BC是抛物线y=-ax2+30(a>0)的一部分;CD⊥AD,且CD恰好等于圆E的半径.
(1)若要求CD=20米,AD=(10$\sqrt{3}$+30)米,求t与a值;
(2)当0<t≤10时,若要求体育馆侧面的最大宽度DF不超过45米,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知向量$\overrightarrow a=(\frac{1}{2},\;\frac{1}{2}sinx+\frac{{\sqrt{3}}}{2}cosx)$和向量$\overrightarrow b=(1,f(x))$,且$\overrightarrow a∥\overrightarrow b$.
(1)求函数f(x)的最小正周期和最大值;
(2)已知△ABC的三个内角分别为A,B,C,若有$f(2A-\frac{π}{6})$=1,$BC=\sqrt{3}$,求△ABC面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图:已知四棱锥P-ABCD,底面是边长为6的正方形,PA=8,PA⊥面ABCD,
点M是CD的中点,点N是PB的中点,连接AM、AN、MN.
(1)求证:AB⊥MN;
(2)求二面角N-AM-B的大小.

查看答案和解析>>

科目: 来源: 题型:填空题

20.一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b(a,b≠0),不得分的概率为$\frac{a+b}{2}$.若他投篮一次得分ξ的数学期望$Eξ>\frac{7}{4}$,则a的取值范围是($\frac{5}{12}$,$\frac{2}{3}$).

查看答案和解析>>

科目: 来源: 题型:填空题

19.在极坐标系中,将圆ρ=2沿着极轴正方向平移两个单位后,再绕极点逆时针旋转$\frac{π}{4}$弧度,则所得的曲线的极坐标方程为ρ=4cos(θ-$\frac{π}{4}$).

查看答案和解析>>

科目: 来源: 题型:填空题

18.在(2x+y+z)10的展开式中,x3y2z5的系数为20160.

查看答案和解析>>

科目: 来源: 题型:填空题

17.已知数列{an}满足${a_1}=1,{a_n}{a_{n+1}}={2^n}$(n∈N*),则a2n=2n

查看答案和解析>>

同步练习册答案