相关习题
 0  231983  231991  231997  232001  232007  232009  232013  232019  232021  232027  232033  232037  232039  232043  232049  232051  232057  232061  232063  232067  232069  232073  232075  232077  232078  232079  232081  232082  232083  232085  232087  232091  232093  232097  232099  232103  232109  232111  232117  232121  232123  232127  232133  232139  232141  232147  232151  232153  232159  232163  232169  232177  266669 

科目: 来源: 题型:选择题

16.已知定义在R上的函数g(x)的导函数为g′(x),满足g′(x)-g(x)<0,若函数g(x)的图象关于直线x=2对称,且g(4)=1,则不等式$\frac{g(x)}{e^x}$>1的解集为(  )
A.(-2,+∞)B.(0,+∞)C.(-∞,0)D.(-∞,2)

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知A(-1,2)为抛物线C:y=2x2上的点,直线l1过点A,且与抛物线C相切.直线l2:x=a(a>-1)交抛物线C于点B,交直线l1于点D.设设由抛物线C、直线l1、l2所围成的图形的面积为S1
(1)求直线l1的方程;
(2)求S1的值.

查看答案和解析>>

科目: 来源: 题型:填空题

14.如果y=f(x)的定义域为R,对于定义域内的任意x,存在实数a使得f(x+a)=f(-x)成立,则称此函数具有“P(a)性质”.给出下列命题:
①函数y=sinx具有“P(a)性质”;
②若奇函数y=f(x)具有“P(2)性质”,且f(1)=1,则f(2015)=1;
③若函数y=f(x)具有“P(4)性质”,图象关于点(1,0)成中心对称,且在(-1,0)上单调递减,则y=f(x)在(-2,-1)上单调递减,在(1,2)上单调递增;
④若不恒为零的函数y=f(x)同时具有“P(0)性质”和“P(3)性质”,函数y=f(x)是周期函数.
其中正确的是①③④(写出所有正确命题的编号).

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知定义在(0,+∞)上的函数f(x)=2x+$\frac{10}{x}$.设点P是函数图象上的任意一点,过点P分别作直线y=2x和y轴的垂线,垂足分别为M、N.
(1)|PM|•|PN|是否为定值?若是,求出该定值;若不是,说明理由;
(2)设P(x0,y0),M(t,2t),试用x0表示t,并求出线段OM的长(结果用含x0的式子表示);
(3)设点O为坐标原点,求四边形OMPN面积的最小值.
(提示:当x>0,k>0时,恒有x+$\frac{k}{x}≥2\sqrt{k}$(当且仅当x=$\sqrt{k}$时,等号成立)).

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,在菱形ABCD中,∠DAB=60°,E是AB的中点,MA⊥平面ABCD,且在矩形ADNM中,AD=2,AM=3.
(1)求证:AC⊥BN;
(2)求证:AN∥平面MEC;
(3)求二面角M-BC-A的大小.

查看答案和解析>>

科目: 来源: 题型:填空题

11.由tan(α+β)=$\frac{tanα+tanβ}{1-tanα•tanβ}$,可得:tanα+tanβ=tan(α+β)[1-tanα•tanβ],根据此推理及公式解决下列问题:
(1)若A+B=225°,则(1+tanA)(1+tanB)2
(2)不用计算器求值:(1+tan1°)(1+tan2°)(1+tan3°)•…•(1+tan44°)=222

查看答案和解析>>

科目: 来源: 题型:填空题

10.已知α∈($\frac{π}{2}$,π),cosα=-$\frac{3}{5}$,则 tanα=-$\frac{4}{3}$;tan(α+$\frac{π}{4}$)-$\frac{1}{7}$.

查看答案和解析>>

科目: 来源: 题型:选择题

9.若f(cosx)=cos2x,则f(1)=(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知锐角a终边上一点P的坐标为(4sin3,-4cos3),则a等于(  )
A.3B.-3C.3-$\frac{π}{2}$D.$\frac{π}{2}$-3

查看答案和解析>>

科目: 来源: 题型:解答题

7.求函数y=$\frac{1}{3}$x3-x的单调区间及极值.

查看答案和解析>>

同步练习册答案