相关习题
 0  231991  231999  232005  232009  232015  232017  232021  232027  232029  232035  232041  232045  232047  232051  232057  232059  232065  232069  232071  232075  232077  232081  232083  232085  232086  232087  232089  232090  232091  232093  232095  232099  232101  232105  232107  232111  232117  232119  232125  232129  232131  232135  232141  232147  232149  232155  232159  232161  232167  232171  232177  232185  266669 

科目: 来源: 题型:填空题

16.在△ABC中,a=2,b=3,cosA=$\frac{2\sqrt{2}}{3}$,则sinB=$\frac{1}{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

15.写出命题p:“?x∈[-$\frac{π}{2}$,$\frac{π}{2}$],恒有sinx+cosx≤$\sqrt{2}$“的否定:?x∈[-$\frac{π}{2}$,$\frac{π}{2}$],使得sinx+cosx>$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

14.等腰三角形ABC绕底边上的中线AD所在的直线旋转半周所得的几何体是(  )
A.圆台B.圆锥C.圆柱D.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知数列{an}与{bn}满足an+1-an=2(bn+1-bn),n∈N*
(1)若bn=3n+5,且a1=1,求数列{an}的通项公式;
(2)设a1=λ<0,bnn(n∈N*),求λ的取值范围,使得{an}有最大值M与最小值m,且$\frac{M}{m}$∈(-2,2).

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知实数a>0,b>0,且a2+3b2=3,若$\sqrt{5}$a+b≤m恒成立.
(1)求m的最小值;
(2)若2|x-1|+|x|≥$\sqrt{5}$a+b对a>0,b>0恒成立,求实数x的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

11.函数f(x)=$\frac{ax+b}{x^2+c}$的图象如图所示,则下列结论成立的是(  )
A.a>0,c>0B.a>0,c<0C.a<0,c>0D.a<0,c<0

查看答案和解析>>

科目: 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{k(x+2),x≤0}\\{-lnx,x>0}\end{array}\right.$(k<0),若函数y=f(f(x))-1有3个零点,则实数k的取值范围为k<-1.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数f(x)=xlnx,g(x)=$\frac{a}{x}$(其中a∈R)
(Ⅰ)求函数f(x)的极值;
(Ⅱ)设函数h(x)=f′(x)+g(x)-1,试确定h(x)的单调区间及最值;
(Ⅲ)求证:对于任意的正整数n,均有e${\;}^{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{n}}$≥$\frac{{e}^{n}}{n!}$成立.(注:e为自然对数的底数)

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\frac{\sqrt{3}}{2}$,点A(0,-2)与椭圆右焦点F的连线的斜率为$\frac{2\sqrt{3}}{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)O为坐标原点,过点A的直线l与椭圆C相交于P、Q两点,当△OPQ的面积最大时,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.
(Ⅰ)求证:平面AEC⊥平面PDB;
(Ⅱ)当PD=2AB,且E为PB的中点,求二面角B-AE-C的余弦值.

查看答案和解析>>

同步练习册答案