相关习题
 0  232039  232047  232053  232057  232063  232065  232069  232075  232077  232083  232089  232093  232095  232099  232105  232107  232113  232117  232119  232123  232125  232129  232131  232133  232134  232135  232137  232138  232139  232141  232143  232147  232149  232153  232155  232159  232165  232167  232173  232177  232179  232183  232189  232195  232197  232203  232207  232209  232215  232219  232225  232233  266669 

科目: 来源: 题型:选择题

17.用1,2,3,4,5,组成无重复数字的五位数,则1,3相邻,而2,4不相邻的数有(  )
A.48个B.36个C.24个D.12个

查看答案和解析>>

科目: 来源: 题型:解答题

16.在平面直角坐标系xOy中,点P(t2,2t)(t为参数),若以原点O为原点,x轴的正半轴为极轴建立极坐标系,曲线l的极坐标方程为ρcosθ-ρsinθ+2=0
(1)求点P的轨迹方程.
(2)求一点P,使它到直线l的距离最小,并求最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

15.(1)若f(x)=-$\frac{1}{2}$x2+bln(x+2)在(-1,+∞)上是减函数,求b的取值范围;
(2)已知函数f(x)=x3-ax2+x,a∈R.若函数f(x)在区间(1,2]内存在单调递增区间,求a的取值范围;
(3)已知函数f(x)=x3-ax2-a2x+3(a<0),若函数f(x)在区间(-2,-1)内是增函数,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

14.微信是现代生活进行信息交流的重要工具,据统计,某公司200名员工中90%的人使用微信,其中每天使用微信时间在一小时以内的有60人,其余每天使用微信在一小时以上.若将员工年龄分成青年(年龄小于40岁)和中年(年龄不小于40岁)两个阶段,使用微信的人中75%是青年人.若规定:每天使用微信时间在一小时以上为经常使用微信,经常使用微信的员工中$\frac{2}{3}$是青年人.
(Ⅰ)若要调查该公司使用微信的员工经常使用微信与年龄的关系,列出2×2列联表;
青年人中年人合计
经常使用微信
不经常使用微信
合计
(Ⅱ)由列联表中所得数据,是否有99.9%的把握认为“经常使用微信与年龄有关”?
P(K2≥k)0.0100.001
k6.63510.828
附:K2=$\frac{n(ad-bc)}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目: 来源: 题型:解答题

13.在去年某段时间内,一件商品的价格x元和需求量y件之间的一组数据为:
x(元)1416182022
Y(件)1210753
且知x与y具有线性相关关系,
(1)求出y对x的线性回归方程,并预测商品价格为24元时需求量的大小.
(2)计算R2(保留三位小数),并说明拟合效果的好坏.
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$x,R2=$\frac{\sum_{i=1}^{n}({y}_{i}-\widehat{y})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$.

查看答案和解析>>

科目: 来源: 题型:解答题

12.某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.

(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;
(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?
公式和临界值表参考第20题
生产能手非生产能手合计
25周岁以上组154560
25周岁以下组152540
合计3070100

查看答案和解析>>

科目: 来源: 题型:解答题

11.某市积极倡导学生参与绿色环保活动,其中代号为“环保卫士-12369”的绿色环保活动小组对2014年1月-2014年12月(一年)内空气质量指数API进行监测,如表是在这一年随机抽取的100天的统计结果:
指数API[0,50](50,100](100,150](150,200](200,250](250,300]>300
空气质量轻微污染轻度污染中度污染中重度污染重度污染
天数413183091115
若本次抽取的样本数据有30天是在供暖季节,其中有8天为重度污染,完成2×2列联表,并判断是否有95%的把握认为某市本年度空气重度污染与供暖有关?
非重度污染重度污染合计
供暖季
非供暖季节
合计100
下面临界值表供参考.
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目: 来源: 题型:选择题

10.已知A,B,C三点在曲线$y=\sqrt{x}$上,其横坐标依次为1,m,4(1<m<4),当△ABC的面积最大时,m的值为(  )
A.$\frac{9}{4}$B.$\frac{3}{2}$C.$\frac{5}{2}$D.3

查看答案和解析>>

科目: 来源: 题型:填空题

9.已知点A(-1,0)和B(1,0).若直线 y=-2x+b与线段AB相交,则b的取值范围是[-2,2].

查看答案和解析>>

科目: 来源: 题型:解答题

8.求适合等式:(2x-1)+i=y+(y-3)i的x,y值,其中x∈R,y是纯虚数.

查看答案和解析>>

同步练习册答案