相关习题
 0  232166  232174  232180  232184  232190  232192  232196  232202  232204  232210  232216  232220  232222  232226  232232  232234  232240  232244  232246  232250  232252  232256  232258  232260  232261  232262  232264  232265  232266  232268  232270  232274  232276  232280  232282  232286  232292  232294  232300  232304  232306  232310  232316  232322  232324  232330  232334  232336  232342  232346  232352  232360  266669 

科目: 来源: 题型:填空题

18.抛物线y2=4x上任一点到定直线l:x=-1的距离与它到定点F的距离相等,则该定点F的坐标为(1,0).

查看答案和解析>>

科目: 来源: 题型:填空题

17.设实数a,b均为区间[0,1]内的随机数,则关于x的不等式$b{x^2}+ax+\frac{1}{4}<0$有实数解的概率为$\frac{1}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

16.己知函数$f(x)=xlnx-\frac{a}{2}{x^2}$(a∈R),
(Ⅰ) 若函数y=f(x)的图象在点(1,f(1))处的切线方程为x+y+b=0,求实数a,b的值;
(Ⅱ) 若函数f(x)≤0恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

15.复数z=1+2i(i为虚数单位),$\overrightarrow{z}$为z的共轭复数,则下列结论正确的是(  )
A.$\overrightarrow{z}$的实部为-1B.$\overrightarrow{z}$的虚部为-2iC.z•$\overrightarrow{z}$=5D.$\frac{\overrightarrow{z}}{z}$=i

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知函数$f(x)=lnx+\frac{1}{2}a{x^2}-({a+1})x({a∈R})$.
(I)a=1时,求函数y=f(x)的零点个数;
(Ⅱ)当a>0时,若函数y=f(x)在区间[1,e]上的最小值为-2,求a的值;
(Ⅲ)若关于x的方程$f(x)=\frac{1}{2}a{x^2}$有两个不同实根x1,x2,求实数a的取值范围并证明:${x_1}•{x_2}>{e^2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知函数f(x)=alnx+x2+bx(a为实常数).
(I)若a=-2,b=-3,求f(x)的单调区间;
(Ⅱ)若b=0,且a>-2e2,求函数f(x)在[1,e]上的最小值及相应的x值;
(Ⅲ)设b=0,若存在x∈[1,e],使得f(x)≤(a+2)x成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

12.已知正三角形ABC的三个顶点都在球心为O、半径为2的球面上,且三棱锥O-ABC的高为1,点D是线段BC的中点,过点D作球O的截面,则截面面积的最小值为$\frac{9π}{4}$.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知函数$f(x)=lnx-\frac{a(x-1)}{x}(a∈R)$.
(Ⅰ)若a=1,求y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)求证:不等式$\frac{1}{lnx}-\frac{1}{x-1}<\frac{1}{2}$对一切的x∈(1,2)恒成立.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知f(x)=ax-lnx,a∈R.
(1)当a=1时,求曲线f(x)在点(2,f(2))处的切线方程;
(2)是否存在实数a,使f(x)在区间(0,e]的最小值是3,若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

9.设函数f(x)=ex-a(x+1)(e是自然对数的底数,e=2.71828…).
(1)若f'(0)=0,求实数a的值,并求函数f(x)的单调区间;
(2)设g(x)=f(x)+$\frac{a}{e^x}$,且A(x1,g(x1)),B(x2,g(x2))(x1<x2)是曲线y=g(x)上任意两点,若对任意的a≤-1,恒有g(x2)-g(x1)>m(x2-x1)成立,求实数m的取值范围;
(3)求证:1n+3n+…+(2n-1)n<$\frac{{\sqrt{e}}}{e-1}{(2n)^n}(n∈{N^*})$.

查看答案和解析>>

同步练习册答案