相关习题
 0  232169  232177  232183  232187  232193  232195  232199  232205  232207  232213  232219  232223  232225  232229  232235  232237  232243  232247  232249  232253  232255  232259  232261  232263  232264  232265  232267  232268  232269  232271  232273  232277  232279  232283  232285  232289  232295  232297  232303  232307  232309  232313  232319  232325  232327  232333  232337  232339  232345  232349  232355  232363  266669 

科目: 来源: 题型:选择题

8.设A={x∈Z||x|≤3},B={y|y=x2+1,x∈A},则B中元素的个数是(  )
A.5B.4C.3D.无数个

查看答案和解析>>

科目: 来源: 题型:选择题

7.设抛物线C:y2=4x的焦点为F,直线l过点M(2,0)且与C交于A,B两点,|BF|=$\frac{3}{2}$,若|AM|=λ|BM|,则λ=(  )
A.$\frac{3}{2}$B.2C.4D.6

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知前n项和Sn的正项数列{an}满足lgan+1=$\frac{1}{2}$(lgan+lgan+2),且a3=4,S2=3,则(  )
A.2Sn=an+1B.Sn=2an+1C.2Sn=an-1D.Sn=2an-1

查看答案和解析>>

科目: 来源: 题型:选择题

5.设l,m是不同的直线,α、β是不同的平面,且l?α,m?β(  )
A.若l⊥β,则 α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m

查看答案和解析>>

科目: 来源: 题型:解答题

4.某高校“统计初步“课程教师随机调查了选该科的一些学生情况,共调查了50人,其中女生27人,男生23人.女生中有20人选统计专业,另外7人选非统计专业,男生中有10人选统计专业,另外13人选非统计专业.
(1)根据以上数据完成下列的2×2联列表:
  专业
性别
非统计专业统计专业合计
合计
(2)根据以上数据,能否在犯错误的概率不超过0.05的情况下,认为主修统计专业与性别有关?

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知复数z1=$\frac{3}{a+2}$+(a2-3)i,若虚数z1是实系数一元二次方程x2-6x+m=0的根,则实数m的值为(  )
A.5B.6C.12D.13

查看答案和解析>>

科目: 来源: 题型:解答题

2.心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学 (男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)
几何题代数题合计
25530
101020
合计351550
下面的临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)
(1)能否在犯错的概率不超过0.025的前提下认为视觉和空间能力与性别有关?
(2)现从选择做几何题的10名女生中任意抽取3人对她们的答题情况进行全程研究,记甲、乙、丙三位女生被抽到的人数为X,求X的分布列及数学期望EX.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知向量$\vec a=({sinθ,-2})$,$\vec b=({1,cosθ})$互相垂直,其中$θ∈(0,\frac{π}{2})$;
(1)求tan2θ的值;
(2)若$sin({θ-φ})=\frac{{\sqrt{10}}}{10},0<φ<\frac{π}{2}$,求cosφ的值.

查看答案和解析>>

科目: 来源: 题型:填空题

20.已知${a_n}=\frac{n(n+1)}{2}$,删除数列{an}中所有能被2整除的数,剩下的数从小到大排成数列{bn},则b21=861.

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知抛物线$\frac{1}{4}{y^2}=x$的焦点为F,点A(2,2),点P在抛物线上,则|PA|+|PF|的最小值为3.

查看答案和解析>>

同步练习册答案