相关习题
 0  232222  232230  232236  232240  232246  232248  232252  232258  232260  232266  232272  232276  232278  232282  232288  232290  232296  232300  232302  232306  232308  232312  232314  232316  232317  232318  232320  232321  232322  232324  232326  232330  232332  232336  232338  232342  232348  232350  232356  232360  232362  232366  232372  232378  232380  232386  232390  232392  232398  232402  232408  232416  266669 

科目: 来源: 题型:解答题

15.在△ABC内角A,B,C的对边分别是a,b,c,已知b=acosC+csinA,cosB=$\frac{4}{5}$.
(I) 求cosC的值;
(Ⅱ)若BC=10,D为AB的中点,求CD的长.

查看答案和解析>>

科目: 来源: 题型:选择题

14.若先将函数y=$\sqrt{3}$sin(x-$\frac{π}{6}$)+cos(x-$\frac{π}{6}$)图象上各点的纵坐标不变,横坐标缩短到原来的$\frac{1}{2}$倍,再将所得图象向左平移$\frac{π}{6}$个单位,所得函数图象的一条对称轴的方程是(  )
A.x=$\frac{π}{6}$B.x=$\frac{π}{3}$C.x=$\frac{π}{12}$D.x=$\frac{5π}{6}$

查看答案和解析>>

科目: 来源: 题型:选择题

13.过点(0,1)的直线l被圆(x-1)2+y2=4所截得的弦长最短时,直线l的斜率为(  )
A.1B.-1C.$\sqrt{2}$D.$-\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

12.二阶矩阵A有特征值λ=6,其对应的一个特征向量为$\overrightarrow e=[\begin{array}{l}1\\ 1\end{array}]$,并且矩阵A对应的变换将点(1,2)变换成点(8,4),求矩阵A.

查看答案和解析>>

科目: 来源: 题型:选择题

11.2名厨师和3位服务员共5人站成一排合影,若厨师甲不站两端,3位服务员中有且只有两位服务员相邻,则不同排法的种数是(  )
A.60B.48C.42D.36

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的右顶点为A,上顶点为B,且$|{AB}|=\sqrt{3}$,椭圆的离心率为$\frac{{\sqrt{2}}}{2}$.
(1)求椭圆E的标准方程;
(2)若直线l:y=kx+m与椭圆E相交于C,D两个不同的点,且坐标原点O到直线l的距离为$\frac{{\sqrt{6}}}{3}$,求证:$\overline{OC}•\overline{OD}=0$.

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$及点B(0,a),过B与椭圆相切的直线交x轴的负半轴于点A,F为椭圆的右焦点,则∠ABF=(  )
A.60°B.90°C.120°D.150°

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知三棱锥S-ABC的四个顶点均落在球O的表面上,且SA⊥平面ABC,∠ABC=90°,$SA=BC=\frac{1}{2}AB=1$,则球O的体积与表面积的比值为(  )
A.$\frac{{\sqrt{6}}}{6}$B.$\frac{{\sqrt{6}}}{4}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知函数f(x)=$\frac{a+lnx}{x}$的最大值为1.
(1)求实数a的值;
(2)如果函数m(x),n(x)在公共定义域D上,满足m(x)<n(x),那么就称n(x)为m(x)的“线上函数”,若p(x)=$\frac{2{e}^{x-1}}{(x+1)(x{e}^{x}+1)}$,q(x)=$\frac{f(x)}{e+1}$(x>1),求证:q(x)是p(x)的“线上函数”.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知函数f(x)=(λx+1)lnx-x+1.
(Ⅰ)若λ=0,求f(x)的最大值; 
(Ⅱ)若曲线y=f(x)在点(1,f(1))处的切线与直线x+y+1=0垂直,证明:$\frac{f(x)}{x-1}>0$.

查看答案和解析>>

同步练习册答案