相关习题
 0  232224  232232  232238  232242  232248  232250  232254  232260  232262  232268  232274  232278  232280  232284  232290  232292  232298  232302  232304  232308  232310  232314  232316  232318  232319  232320  232322  232323  232324  232326  232328  232332  232334  232338  232340  232344  232350  232352  232358  232362  232364  232368  232374  232380  232382  232388  232392  232394  232400  232404  232410  232418  266669 

科目: 来源: 题型:选择题

15.在△ABC中,内角A,B,C的对边分别是a,b,c,若$\frac{a}{b}=\frac{{b+3\sqrt{3}c}}{a}$,$sinC=2\sqrt{3}sinB$,则tanA=(  )
A.$\sqrt{3}$B.$-\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$-\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两焦点为F1,F2,离心率为$\frac{{\sqrt{2}}}{2}$,直线l与椭圆相交于A(x1,y1),B(x2,y2)两点,且满足$|A{F_1}|+|A{F_2}|=4\sqrt{2}$,O为坐标原点.
(1)求椭圆的方程;
(2)设向量$\overrightarrow m=(\frac{x_1}{b},\frac{y_1}{a})$,$\overrightarrow n=(\frac{x_2}{b},\frac{y_2}{a})$,且$\overrightarrow m•\overrightarrow n=0$,试证明△AOB的面积为定值.

查看答案和解析>>

科目: 来源: 题型:填空题

13.已知抛物线x2=8y与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线交于点A,若点A到抛物线的准线的距离为4,则双曲线的离心率为$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

12.求圆${(x-\frac{1}{2})^2}+{(y+1)^2}=\frac{5}{4}$关于直线x-y+1=0对称的圆的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知直线l经过圆${C_1}:{(x+3)^2}+{(y-3)^2}=13$与圆${C_2}:{x^2}+{y^2}=1$的两个公共点.
(1)求直线l的方程;
(2)若圆心为C的圆经过点A(3,-3)和点B(1,1),且圆心在直线l上,求圆心为C的圆的标准方程.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知函数f(x)=x2+2x,g(x)+f(-x)=0.
(1)求函数g(x)的解析式;
(2)解不等式g(x)≥f(x)-|x-1|;
(3)若h(x)=g(x)-λf(x)+1在[-l,1]上单调递增,求实数λ的范围.

查看答案和解析>>

科目: 来源: 题型:填空题

9.由曲线y=$\sqrt{x}$,直线x=2及x轴所围图形的面积为$\frac{4\sqrt{2}}{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

8.以下四个命题中,真命题的个数是 (  )
①若a+b≥2,则a,b中至少有一个不小于1;
②$\overrightarrow{a}$•$\overrightarrow{b}$=0是$\overrightarrow{a}$⊥$\overrightarrow{b}$的充要条件;
③?x∈[0,+∞),x3+x≥0;
④函数y=f(x+1)是奇函数,则y=f(x)的图象关于(1,0)对称.
A.0B.1C.2D.3

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知函数f(x)=|x-2|-|x+1|
(1)解不等式f(x)<1;
(2)若$?x∈R,f(x)≥{log_{\frac{1}{3}}}(m-3)$,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

6.在平面直角坐标系中,已知圆C的方程为(x-3)2+(y+4)2=4,以原点为极点,x轴的非负半轴为极轴建立极坐标系,$A(2,π),B(2,\frac{π}{2})$.
(1)写出圆C的极坐标方程与参数方程;
(2)若F在圆C上运动,求△ABF的面积的最大值.

查看答案和解析>>

同步练习册答案