相关习题
 0  232257  232265  232271  232275  232281  232283  232287  232293  232295  232301  232307  232311  232313  232317  232323  232325  232331  232335  232337  232341  232343  232347  232349  232351  232352  232353  232355  232356  232357  232359  232361  232365  232367  232371  232373  232377  232383  232385  232391  232395  232397  232401  232407  232413  232415  232421  232425  232427  232433  232437  232443  232451  266669 

科目: 来源: 题型:选择题

5.方程lnx=-x+3的根所在的区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,已知PA与圆O相切,P为切点,割线ABC与圆O相切于点B,C,AC=2PA,D为AC的中点.PD的延长线交圆O于E点,证明:
(1)∠ECD=∠EBD;
(2)2DB2=PD•DE.

查看答案和解析>>

科目: 来源: 题型:解答题

3.在平面直角坐标系xOy中,过椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的一个焦点作一直线交椭圆于E,F两点,线段|EF|长的最大值与最小值分别是$4\sqrt{2},2\sqrt{2}$.
(1)求椭圆的方程;
(2)与圆(x-1)2+y2=1相切的直线l:y=kx+1与椭圆交于M,N两点,若椭圆上一点C满足$\overrightarrow{OM}+\overrightarrow{ON}=λ\overrightarrow{OC}$,求实数λ的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图甲,在矩形ABCD中,E,F分别是AD,BC的中点,$AD=2\sqrt{2},AB=3$,将矩形ABCD沿EF折起,如图乙,使平面CDEF⊥平面ABFE,点M是AD的中点,点N在AB上运动.
(1)证明:EM⊥CN;
(2)若三棱锥C-BFN的顶点都在体积为$\frac{{8\sqrt{2}π}}{3}$的球面上,求三棱锥C-BFN的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

1.贵阳市某中学高三(2)班排球队和篮球队各有10名同学,现测得排球队10人的身高(单位:cm)分别是:162,170,171,182,163,158,179,168,183,168,篮球队10人的身高(单位:cm)分别是:170,159,162,173,181,165,176,168,178,179.
(1)请把两队身高数据记录在图中所示的茎叶图中,并求出两个队的身高的平均数;
(2)现从两队所在身高超过178cm的同学中随机抽取三明同学,则恰好两人来自排球队一人来自篮球队的概率是多少?

查看答案和解析>>

科目: 来源: 题型:选择题

20.设方程4x=|lg(-x)|的两个根为x1,x2,则(  )
A.x1x2<0B.x1x2=1C.x1x2>0D.0<x1x2<1

查看答案和解析>>

科目: 来源: 题型:选择题

19.若函数$f(x)=-\frac{1}{{\sqrt{b}}}{e^{\sqrt{ax}}}(a>0,b>0)$的图象在x=0出的切线与圆x2+y2=1相切,则2a+2b的最小值是(  )
A.4B.$\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知函数$f(x)=({\sqrt{3}sinωx+cosωx})cosωx-\frac{1}{2}({x∈R,ω>0})$.若f(x)的最小正周期为4π.
(1)求函数f(x)的单调递增区间;
(2)在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知函数f(x)=xe1-x,g(x)=(2-a)x-2lnx+a-2.
(1)求函数g(x)的单调区间;
(2)若对于?x0∈(0,e],在区间(0,e]上总存在两个不同实数xi(i=1,2),使得f(x0)=g(xi),求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

16.命题p:“?x1,x2∈R且x1<x2,$x_1^3<x_2^3$”的否定是(  )
A.?x1,x2∈R且x1<x2,$x_1^3≥x_2^3$B.?x1,x2∈R且x1≥x2,$x_1^3≥x_2^3$
C.?x1,x2∈R且x1<x2,$x_1^3≥x_2^3$D.?x1,x2∈R且x1≥x2,$x_1^3≥x_2^3$

查看答案和解析>>

同步练习册答案