相关习题
 0  232286  232294  232300  232304  232310  232312  232316  232322  232324  232330  232336  232340  232342  232346  232352  232354  232360  232364  232366  232370  232372  232376  232378  232380  232381  232382  232384  232385  232386  232388  232390  232394  232396  232400  232402  232406  232412  232414  232420  232424  232426  232430  232436  232442  232444  232450  232454  232456  232462  232466  232472  232480  266669 

科目: 来源: 题型:解答题

4.(1)计算:${i^{2010}}+{(\sqrt{2}+\sqrt{2}i)^2}-{({\frac{{\sqrt{2}}}{1-i}})^4}$
(2)已知函数f(x)满足$f(x)=f'(1){e^{x-1}}-f(0)x+\frac{1}{2}{x^2}$;求f(x)的解析式.

查看答案和解析>>

科目: 来源: 题型:选择题

3.若长轴长为2a,短轴长为2b椭圆的面积为πab,则$\int_{-3}^3{\sqrt{1-\frac{x^2}{9}}}dx$=(  )
A.B.C.D.$\frac{3π}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

2.设f(x)=x3,则函数y=f(a-bx)(其中a,b∈R)的导函数是(  )
A.y′=3(a-bx)B.y′=2-3b(a-bx)2C.y′=-3b(a-bx)2D.y′=3b(a-bx)2

查看答案和解析>>

科目: 来源: 题型:填空题

1.已知等比数列{an}中a1=1,a4=8,在an与an+1两项之间依次插入2n-1个正整数,得到数列{bn},即:a1,1,a2,2,3,a3,4,5,6,7,a4,8,9,10,11,12,13,14,15,a5,…则数列{bn}的前2016项之和S2016=2013062(用数字作答).

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知圆C:(x-3)2+(y+1)2=25,过点M(0,4)作直线l与圆C交于点A,B,
(1)若AB=8,求直线l的方程.
(2)当直线l的斜率为-2时,在直线l上求一点P,使过点P的切线长等于PM.
(3)AB的中点为E,在平面上找一定点F,使EF的长为定值,并求出这个定值.

查看答案和解析>>

科目: 来源: 题型:解答题

19.(1)已知$sinα-cosα=\frac{1}{5}$(α是第三象限角),求sinα•cosα及sinα+cosα的值
(2)已知$cos({{{40}^o}+x})=\frac{1}{4}$,且-180°<x<-90°,求cos(140°-x)+cos2(50°-x)的值.

查看答案和解析>>

科目: 来源: 题型:填空题

18.把正整数按如图所示的规律排序,则从2003到2005的箭头方向依次为向右、向上. 

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知回归方程为$\hat y=8x-70$,则该方程在样本(10,13)处的残差为(  )
A.10B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知直线l过A(1,1)和点B(0,$\frac{1}{3}$)
(1)求直线l的方程
(2)求l关于直线x+y-2=0对称的直线方程.

查看答案和解析>>

科目: 来源: 题型:解答题

15.某地最近十年粮食需求量逐年上升,如表是部分统计数据
第x年12345
需求量(万吨)36578
(1)利用所给数据求两变量之间的回归方程
(2)利用(1)中所求出的回归直线方程预测该地第6年的粮食需求量
附:回归直线方程的斜率和截距的最小二乘估计分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}\overline{x}$.

查看答案和解析>>

同步练习册答案