相关习题
 0  232306  232314  232320  232324  232330  232332  232336  232342  232344  232350  232356  232360  232362  232366  232372  232374  232380  232384  232386  232390  232392  232396  232398  232400  232401  232402  232404  232405  232406  232408  232410  232414  232416  232420  232422  232426  232432  232434  232440  232444  232446  232450  232456  232462  232464  232470  232474  232476  232482  232486  232492  232500  266669 

科目: 来源: 题型:解答题

14.某人经营一个抽奖游戏,顾客花费2元钱可购买一次游戏机会,每次游戏中,顾客从装有1个黑球,3个红球,6个白球的不透明袋子中依次不放回地摸出3个球(除颜色外其他都相同),根据摸出的球的颜色情况进行兑奖,顾客获得一等奖、二等奖、三等奖、四等奖时分别可领取奖金a元、10元、5元、1元,若经营者将顾客摸出的3个球的颜色情况分成以下类别:A:1个黑球2个红球;B:3个红球;C:恰有1个白球;D:恰有2个白球;E:3个白球.且经营者计划将五种类别按照发生机会从小到大的顺序分别对应中一等奖、中二等奖、中三等奖、中四等奖、不中奖五个层次.
(1)请写出一至四等奖分别对应的类别(写出字母即可);
(2)若经营者不打算在这个游戏的经营中亏本,求a的最大值;
(3)若a=50,当顾客摸出的第一个球是红球时,求他领取的奖金的平均值.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知 i是虚数单位,复数z1满足(z1-2)(1+i)=1-i.
(1)求复数z1
(2)若复数z2的虚部为2,且$\frac{z_2}{{\overline{z_1}}}$是实数,求|z2|.

查看答案和解析>>

科目: 来源: 题型:填空题

12.sin2840°+cos540°+tan225°-cos(-330°)+sin(-210°)的值是$\frac{{5-2\sqrt{3}}}{4}$.

查看答案和解析>>

科目: 来源: 题型:填空题

11.给出下列条件:
①$\vec a=\vec b$;   
②$|\vec a|=|\vec b|$;  
③$\vec a$与$\vec b$的方向相反;   
④$|\vec a|=0$或$|\vec b|=0$;
⑤$\vec a$与$\vec b$都是单位向量
其中能使$\vec a∥\vec b$成立的是①③④(填序号)

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,已知四棱锥P-ABCD,底面对角线AC,BD交于点O,$\overrightarrow{AB}=\overrightarrow{DC}且\overrightarrow{AC}•(\overrightarrow{DC}-\overrightarrow{BC})=0$,又知OA=4,OB=3,OP=4,OP⊥底面ABCD,设点M满足$\overrightarrow{PM}$=λ$\overrightarrow{MC}$(λ>0).
(1)当λ=$\frac{1}{2}$时,求直线PA与平面BDM所成角的正弦值;
(2)问线段PC上是否存在这样的点M,使二面角M-AB-C的大小为$\frac{π}{4}$,若存在求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数f(x)=(ax+b)ex,其中e为自然对数的底数,b是复数$\frac{3i-2}{i}$的实部.
(1)求函数f(x)的单调区间
(2)设函数g(x)=$\frac{1}{2}$x-lnx+t,当a=-1时,存在x∈(0,+∞)使得f(x)≤g(x)成立,求t的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

8.设an(n=2,3,4,…)是(3-$\sqrt{x}$)n的展开式中x的一次项的系数,则$\frac{\frac{{a}_{2}}{{3}^{2}}+\frac{{a}_{3}}{{3}^{3}}+…+\frac{{a}_{2015}}{{3}^{2015}}}{{A}_{2016}^{3}}$的值是$\frac{1}{54}$.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知四棱锥V-ABCD的底面是面积为16的正方形ABCD,侧面是全等的等腰三角形,一条侧棱长为2$\sqrt{11}$,计算它的高和侧面三角形底边上的高.

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知点$M({\sqrt{2},1})$,点N在圆O:x2+y2=1上,则∠OMN的最大值为(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目: 来源: 题型:解答题

5.在抛物线y=2-x2上,哪一点的切线处于下述位置?
(1)与x轴平行;
(2)平行于第一象限角的平分线.

查看答案和解析>>

同步练习册答案