相关习题
 0  232315  232323  232329  232333  232339  232341  232345  232351  232353  232359  232365  232369  232371  232375  232381  232383  232389  232393  232395  232399  232401  232405  232407  232409  232410  232411  232413  232414  232415  232417  232419  232423  232425  232429  232431  232435  232441  232443  232449  232453  232455  232459  232465  232471  232473  232479  232483  232485  232491  232495  232501  232509  266669 

科目: 来源: 题型:选择题

4.已知z∈C,且|z|=1,则|z-2-2i|(i为虚数单位)的最小值是(  )
A.2$\sqrt{2}$-1B.2$\sqrt{2}$+1C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:填空题

3.一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出80人作进一步调查,则在[3000,3500)(元)月收入段应抽出12人.

查看答案和解析>>

科目: 来源: 题型:选择题

2.在△ABC中,周长为36cm,且sinA:sinB:sinC=5:6:7,下列结论:
①a:b:c=5:6:7
②a:b:c=$\sqrt{5}$:$\sqrt{6}$:$\sqrt{7}$
③a=10cm,b=12cm,c=14cm
④A:B:C=5:6:7
其中成立的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知一个算法的程序框图如图所示,若输入x=2,则输出的结果是(  )
A.13B.3C.13或3D.5或3

查看答案和解析>>

科目: 来源: 题型:选择题

20.tan20°+tan40°+$\sqrt{3}$tan20°tan40°的值是(  )
A.60°B.$\sqrt{3}$C.1D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知F1,F2是椭圆C:$\frac{{x}^{2}}{5}$+$\frac{3{y}^{2}}{5}$=1的左、右焦点.
(1)若点M在椭圆C上,且∠F1MF2=60°,求△F1MF2的面积;
(2)动直线y=k(x+1)与椭圆C相交于A,B两点,点T(t,0),问是否存在t∈R,使得$\overrightarrow{TA}$•$\overrightarrow{TB}$为定值,若存在求出t的值,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

18.已知f(2x+1)=3x-2,且f(2)=m,则m的值是-$\frac{1}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

17.在三棱柱ABC-A1B1C1中,底面ABC为正三角形,AB=A1A=a,BA1=AC,A1C⊥AB.
(I)求证:AA1⊥BC;
(II)把四棱锥A1-BCC1B1绕直线BC旋转一个角到A′-BB′C′C,使平面ABC与BB′C′C重合,求该旋转角的余弦值.

查看答案和解析>>

科目: 来源: 题型:选择题

16.函数f(x)=ln($\frac{x}{2}$)-$\frac{1}{x}$的零点一定位于区间(  )
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目: 来源: 题型:解答题

15.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如表数据:
单价x(元)88.28.48.68.89
销量y(件)908483807568
(1)求销量y对单价x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(2)预计在今后的销售中,销量与单价仍服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价大概定为多少元?
附:$\sum_{i=1}^6{x_i}$=51$\sum_{i=1}^6{y_i}$=480$\sum_{i=1}^6{x_i}{y_i}$=4066$\sum_{i=1}^6{x_i^2}$=434.2,$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$是样本平均值.

查看答案和解析>>

同步练习册答案