相关习题
 0  232344  232352  232358  232362  232368  232370  232374  232380  232382  232388  232394  232398  232400  232404  232410  232412  232418  232422  232424  232428  232430  232434  232436  232438  232439  232440  232442  232443  232444  232446  232448  232452  232454  232458  232460  232464  232470  232472  232478  232482  232484  232488  232494  232500  232502  232508  232512  232514  232520  232524  232530  232538  266669 

科目: 来源: 题型:解答题

20.已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若m、n∈[-1,1],m+n≠0时$\frac{f(m)+f(n)}{m+n}$>0.
(1)用定义证明f(x)在[-1,1]上是增函数;
(2)若f(x)≤t2-2at+1对所有x∈[-1,1],a∈[-1,1]恒成立,求实数t的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

19.某学校为了了解学生使用手机的情况,分别在高一和高二两个年级各随机抽取了100名学生进行调查.如图表是根据调查结果绘制的学生日均使用手机时间的频率分布直方图和频数分布表,将使用手机时间不低于80分钟的学生称为“手机迷”.
高二学生日均使用手机时间的频数分布表
时间分组频数
[0,20)12
[20,40)20
[40,60)24
[60,80)26
[80,100)14
[100,120)4
(1)将频率视为概率,估计哪个年级的学生是“手机迷”的概率大?请说明理由.
(2)在高一的抽查中,已知随机抽到的女生共有55名,其中10名为“手机迷”.根据已知条件完成下面的2×2列联表,并据此资料判断是否有90%的把握认为“手机迷”与性别有关?说明理由.
非手机迷手机迷合计
合计
附:随机变量${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d为样本总量).

查看答案和解析>>

科目: 来源: 题型:填空题

18.已知集合A={x|$\frac{x-1}{x+1}$≥0},B={x|2a<x≤a+1,a<1},B⊆A,则实数a的取值范围是(-∞,-2)∪[$\frac{1}{2}$,1).

查看答案和解析>>

科目: 来源: 题型:填空题

17.已知△ABC的一个内角为120°,并且三边长度构成以首项为3的等差数列,则△ABC的最小角的余弦值为$\frac{13}{14}$.

查看答案和解析>>

科目: 来源: 题型:填空题

16.若向量$\vec a=(x,1)$与$\vec b=(4,x)$垂直,则x=0.

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知$\overrightarrow a=(1,0){,_{\;}}\overrightarrow b=(2,1)$,且向量$k\overrightarrow a-\overrightarrow b$与$\overrightarrow a+3\overrightarrow b$平行,则k=(  )
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$\frac{13}{3}$D.$\frac{17}{7}$

查看答案和解析>>

科目: 来源: 题型:填空题

14.已知二项式($\sqrt{5}$x-1)3=a${\;}_{{0}_{\;}}$+a1x+a2x2+a3x3,则(a0+a22-(a1+a32=-64.

查看答案和解析>>

科目: 来源: 题型:选择题

13.已知O是坐标原点,点M坐标为(2,1),点N(x,y)是平面区域$\left\{\begin{array}{l}x+y≤2\\ x≥\frac{1}{2}\\ y≥x\end{array}\right.$上的一个动点,则$\overrightarrow{OM}•\overrightarrow{ON}$的最小值为(  )
A.3B.2C.$\frac{3}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目: 来源: 题型:填空题

12.函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<2}\\{sin(\frac{π}{4}x),2≤x≤10}\end{array}\right.$,若存在实数x1,x2,x3,x4,满足f(x1)=f(x2)=f(x3)=f(x4),则$\frac{{{x_3}•{x_4}}}{{{x_1}•{x_2}}}$的取值范围是(20,32).

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知f(x)=|x-1|+|x-a|(a∈R),g(x)=x+$\frac{1}{x}$+4(x<0)
(1)若a=3,求不等式f(x)≥4的解集;
(2)对?x1∈R,?x2∈(-∞,0)有f(x1)≥g(x2)恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案