相关习题
 0  232362  232370  232376  232380  232386  232388  232392  232398  232400  232406  232412  232416  232418  232422  232428  232430  232436  232440  232442  232446  232448  232452  232454  232456  232457  232458  232460  232461  232462  232464  232466  232470  232472  232476  232478  232482  232488  232490  232496  232500  232502  232506  232512  232518  232520  232526  232530  232532  232538  232542  232548  232556  266669 

科目: 来源: 题型:填空题

8.若二项式(a$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)6的展开式的常数项为160,则a=-2.

查看答案和解析>>

科目: 来源: 题型:选择题

7.等差数列{an},{bn}的前n项和分别为Sn,Tn,若$\frac{S_n}{T_n}=\frac{38n+14}{2n+1}({n∈{N_+}})$,则$\frac{a_6}{b_7}$=(  )
A.16B.$\frac{242}{15}$C.$\frac{432}{23}$D.$\frac{494}{27}$

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知椭圆G的离心率为$\frac{{\sqrt{2}}}{2}$,其短轴的两端点为A(0,1),B(0,-1).
(1)求椭圆G的标准方程;
(2)若C,D是椭圆G上关于y轴对称的两个不同的点,直线BC与x轴交于点M,判断以线段MD为直径的圆是否过点A,并说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,其左顶点A在圆x2+y2=12上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线l:x=my+3(m≠0)交椭圆C于M,N两点.
(i)若以弦MN为直径的圆过坐标原点O,求实数m的值;
(ii)设点N关于x轴的对称点为N1(点N1与点M不重合),且直线N1M与x轴交于点P,试问△PMN的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

4.函数f(x)=-x2+2x,x∈[-1,3],则任取一点x0∈[-1,3],使得f(x0)≥0的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图,已知直线MA切圆O于点A,割线MCB交圆O于点C,B两点,∠BMA的角平分线分别与AC,AB交于E,D两点.
(1)证明:AE=AD;
(2)若AB=5,AE=2,求$\frac{MA}{MC}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点为F,短轴长为2,点M为椭圆E上一个动点,且|MF|的最大值为$\sqrt{2}+1$.
(1)求椭圆E的方程;
(2)设不在坐标轴上的点M的坐标为(x0,y0),点A,B为椭圆E上异于点M的不同两点,且直线x=x0平分∠AMB,试用x0,y0表示直线AB的斜率.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知函数$f(x)=\frac{x}{lnx}-ax({a>0})$.
(1)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值;
(2)若?x1、$?{x_2}∈[{e,{e^2}}]$,使f(x1)≤f′(x2)+a成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,在多面体PQR-ABCD中,底面ABCD是平行四边形,AB=2AD=2,∠DAB=60°,PD⊥面ABCD,PD=1,PQ∥DA,PR∥DC,且$PQ=\frac{1}{2}DA,PR=\frac{1}{2}DC$.
(1)求证:平面PQB⊥平面PBD; 
(2)求三棱锥P-BQR的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知函数$f(x)=\frac{a}{{{a^2}-1}}({{a^x}-{a^{-x}}})$,其中a>0且a≠1.
(1)当x∈(-∞,2)时,f(x)-4的值恒为负,求a的取值范围;
(2)若函数y=f(x)的定义域为(-1,1),求满足不等式f(1-m)+f(1-m2)<0的实数m的取值集合.

查看答案和解析>>

同步练习册答案