相关习题
 0  232384  232392  232398  232402  232408  232410  232414  232420  232422  232428  232434  232438  232440  232444  232450  232452  232458  232462  232464  232468  232470  232474  232476  232478  232479  232480  232482  232483  232484  232486  232488  232492  232494  232498  232500  232504  232510  232512  232518  232522  232524  232528  232534  232540  232542  232548  232552  232554  232560  232564  232570  232578  266669 

科目: 来源: 题型:解答题

8.随机抽取某中学甲乙两班10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.
(1)根据茎叶图判断哪个班的平均身高较高(请直接给出结论);
(2)现分别从甲乙两班不低于173cm的同学中各随机抽取1人(共抽取两人),请用抽取学生的身高数据表示所有不同的抽取结果.例如:用(182,178)表示分别从甲乙两班抽取身高为182cm和178cm的学生;
(3)在(2)的条件下,先抽取两人中甲班身高不低于乙班同学身高的概率.

查看答案和解析>>

科目: 来源: 题型:选择题

7.已知α,β是两个不同的平面,m.n是两条不同的直线,则下列命题中正确的是(  )
A.若m∥n,m?β,则n∥βB.若m∥α,α∩β=n,则m∥n
C.若m⊥α,m⊥β,则α∥βD.若m⊥β,α⊥β,则m∥α

查看答案和解析>>

科目: 来源: 题型:选择题

6.某几何体的三视图如图所示,正视图与侧视图完全相同,则该几何体的体积为(  )
A.$\frac{192-8π}{3}$B.$16+16\sqrt{5}+4(\sqrt{2}-1)π$C.$\frac{56π}{3}$D.$\frac{64-8π}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

5.如图,A、B、C、D、E、F是圆O的六个等分点,则转盘指针不落在阴影部分的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

4.由1、2、3三个数字构成的四位数有(  )
A.81个B.64个C.12个D.14个

查看答案和解析>>

科目: 来源: 题型:选择题

3.5个人排成一排,其中甲在中间的排法种数有(  )
A.5B.120C.24D.4

查看答案和解析>>

科目: 来源: 题型:填空题

2.函数y=$\frac{{lg\sqrt{x}}}{{lg(10{x^2})}}$,x∈(10-2,104)且x≠$\frac{{\sqrt{10}}}{10}$的值域为(-∞,$\frac{2}{9}$)∪($\frac{1}{3}$,+∞).

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知cos(α-$\frac{2π}{7}$)=-$\frac{\sqrt{7}}{4}$,且α∈(-$\frac{π}{2}$,0),则sin(α+$\frac{5π}{7}$)等于(  )
A.-$\frac{3}{4}$B.$\frac{3}{4}$C.$\frac{\sqrt{7}}{4}$D.-$\frac{1}{4}$

查看答案和解析>>

科目: 来源: 题型:选择题

20.已知θ∈(-$\frac{π}{2}$,π),若函数f(x)=cos(x+$\frac{π}{6}$+θ)为奇函数,则函数y=sin(2x+θ)的图象在(0,$\frac{π}{3}$)上的对称轴是(  )
A.x=$\frac{π}{4}$B.x=$\frac{π}{8}$C.x=$\frac{π}{12}$D.x=$\frac{π}{6}$

查看答案和解析>>

科目: 来源: 题型:选择题

19.在平行四边形ABCD中,O是对角线的交点,下列结论正确的是(  )
A.$\overrightarrow{AB}$=$\overrightarrow{CD}$,$\overrightarrow{BC}$=$\overrightarrow{AD}$B.$\overrightarrow{AD}$+$\overrightarrow{OD}$=$\overrightarrow{OA}$C.$\overrightarrow{AO}$+$\overrightarrow{OD}$=$\overrightarrow{AC}$+$\overrightarrow{CD}$D.$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CD}$=$\overrightarrow{DA}$

查看答案和解析>>

同步练习册答案