相关习题
 0  232387  232395  232401  232405  232411  232413  232417  232423  232425  232431  232437  232441  232443  232447  232453  232455  232461  232465  232467  232471  232473  232477  232479  232481  232482  232483  232485  232486  232487  232489  232491  232495  232497  232501  232503  232507  232513  232515  232521  232525  232527  232531  232537  232543  232545  232551  232555  232557  232563  232567  232573  232581  266669 

科目: 来源: 题型:选择题

18.已知直线ax-by+2=0(a>0,b>0)被圆x2+y2+2x-2y+1=0截得的弦长为2,则$\frac{1}{a}$+$\frac{2}{b}$的最小值为(  )
A.3B.$\frac{3}{2}$+$\sqrt{2}$C.2+$\sqrt{2}$D.3+2$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:填空题

17.已知实数a,b,c,d满足(a-lnb)2+(c-d)2=0,则(a-c)2+(b-d)2的最小值为$\frac{1}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

16.数列{an}的前n项和是Sn,a1=5,且an=Sn-1(n=2,3,4,…).
(1)求Sn
(2)求数列{an}的通项公式;
(3)求证:$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$<$\frac{3}{5}$.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知函数f(x)=x2+ax+3.
(1)当a=-4 时,解不等式f(x)<0;
(2)若不等式f(x)>0的解集为R,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

14.已知正实数a,b 满足a+4b=8,那么ab的最大值是4.

查看答案和解析>>

科目: 来源: 题型:解答题

13.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{8}$=1(a>2$\sqrt{2}$)的右焦点为F,右顶点为A,上顶点为B,且满足$\frac{1}{|OF|}$+$\frac{1}{|OA|}$=$\frac{8e}{|FA|}$,其中O 为坐标原点,e为椭圆的离心率.
(1)求椭圆C的方程;
(2)设点P是椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:|AN|•|BM|为定值.

查看答案和解析>>

科目: 来源: 题型:选择题

12.设抛物线y2=2px(p>0)的焦点为F,准线为l,过抛物线上一点A作l的垂线,垂足为B,设C($\frac{7}{2}$p,0),AF与BC相交于点E,若|CF|=2|AF|,且△ACE的面积为3$\sqrt{2}$,则p的值为(  )
A.$\sqrt{6}$B.2C.3D.$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

11.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为4,3,则输出v的值为(  )
A.20B.61C.183D.548

查看答案和解析>>

科目: 来源: 题型:选择题

10.某空间几何体的三视图如图所示,则该几何体的外接球表面积为(  )
A.10πB.C.D.$\frac{9}{4}$π

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,已知AB为圆O的直径,C,D是圆O上的两个点,C是劣弧$\widehat{BD}$的中点,CE⊥AB于E,BD交AC于G,交CE于F.
(1)求证:CF=FG
(2)求证:DG•AC=AG•CE.

查看答案和解析>>

同步练习册答案