相关习题
 0  232401  232409  232415  232419  232425  232427  232431  232437  232439  232445  232451  232455  232457  232461  232467  232469  232475  232479  232481  232485  232487  232491  232493  232495  232496  232497  232499  232500  232501  232503  232505  232509  232511  232515  232517  232521  232527  232529  232535  232539  232541  232545  232551  232557  232559  232565  232569  232571  232577  232581  232587  232595  266669 

科目: 来源: 题型:选择题

13.已知集合A={x|x2-6x+5≤0},$B=\{x|y=\sqrt{x-3}\}$,A∩B=(  )
A.[1,3]B.[1,5]C.[3,5]D.[1,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

12.函数$f(x)=\left\{\begin{array}{l}{10^{1-x}}+1,x≤0\\ lg(x+2),x>0.\end{array}\right.$若f(a)=1,则f(8-a)=(  )
A.4B.6C.8D.11

查看答案和解析>>

科目: 来源: 题型:选择题

11.函数f(x)=excosx在点(0,f(0))处的切线斜率为(  )
A.0B.-1C.1D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

10.某市抽样调查了100位居民的某年的月均用水量(单位:吨)数据如表:

(1)某市若规定人均月用水量的标准是3吨,并希望85%以上的居民的用水量不超过此标准,请估计是否能达预期希望?
(2)请估计该样本数据的中位数.
(3)拟抽查上表中月均用水量在[3.5,4.5]的6位居民中的2位进行调查,求恰好抽到一位在[3.5,4),另一位在[4,4.5]的概率.

查看答案和解析>>

科目: 来源: 题型:填空题

9.正方形ABCD的边长为1,把三角形ABD沿对角线BD翻折,使得面ABD⊥面BCD后,有如下四个结论:
(1)AC⊥BD;(2)△ACD是等边三角形;(3)四面体A-BCD的表面积为$1+\frac{{\sqrt{3}}}{2}$.(4)四面体A-BCD的内切球半径是$\frac{{2\sqrt{3}-\sqrt{6}}}{6}$.
则正确结论的序号为(1)(2)(3).

查看答案和解析>>

科目: 来源: 题型:填空题

8.利用计算机模拟来估计未来三天中恰有两天下雨的概率过程如下:先产生0到9之间均匀整数随机数,用1、2、3、4表示下雨,用5、6、7、8、9、0表示不下雨,每三个随机数作为一组,共产生20组:
907,966,191,925,271,932,812,458,569,683,431,257,393,027,556,488,730,113,537,989,则每一天下雨概率是0.4,三天中两天下雨概率是0.25.

查看答案和解析>>

科目: 来源: 题型:填空题

7.关于函数f(x)=cos(2x-$\frac{π}{3}$)+cos(2x+$\frac{π}{6}$),则下列命题:
①y=f(x)的最大值为$\sqrt{2}$;
②y=f(x)最小正周期是π;
③y=f(x)在区间$[\frac{π}{24},\frac{13π}{24}]$上是减函数;
④将函数y=$\sqrt{2}$cos2x的图象向右平移$\frac{π}{24}$个单位后,将与已知函数的图象重合.
其中正确命题的序号是①②③④.

查看答案和解析>>

科目: 来源: 题型:解答题

6.(Ⅰ)计算lg8+3lg5;
(Ⅱ)计算(0.027)${\;}^{-\frac{1}{3}}$-(-$\frac{1}{7}$)-2+(2$\frac{7}{9}$)${\;}^{\frac{1}{2}}$-($\sqrt{2}$-1)0

查看答案和解析>>

科目: 来源: 题型:填空题

5.已知关于x的不等式|ax-2|+|ax-a|≥2(a>0)
(1)当a=1时,求此不等式的解集;
(2)若此不等式的解集为R,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

4.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=3+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.(t$为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为$ρ=2\sqrt{3}sinθ$.
(1)写出圆C的直角坐标方程;
(2)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.

查看答案和解析>>

同步练习册答案