相关习题
 0  232428  232436  232442  232446  232452  232454  232458  232464  232466  232472  232478  232482  232484  232488  232494  232496  232502  232506  232508  232512  232514  232518  232520  232522  232523  232524  232526  232527  232528  232530  232532  232536  232538  232542  232544  232548  232554  232556  232562  232566  232568  232572  232578  232584  232586  232592  232596  232598  232604  232608  232614  232622  266669 

科目: 来源: 题型:解答题

13.已知命题p:方程x2+2ax+1=0有两个大于-1的实数根,命题q:关于x的不等式ax2-ax+1>0的解集为R,若“p或q”与“¬q”同时为真命题,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

12.数列{an}满足an+an+1=n-1,则该数列的前2016项和为(  )
A.1008×1009B.1007×1008C.1005×1004D.1006×1005

查看答案和解析>>

科目: 来源: 题型:解答题

11.在直三棱柱ABC-A1B1C1中,AC=BC,点D在线段AB上,且平面B1CD⊥平面ABB1A1
(1)确定点D的位置并证明;
(2)证明:AC1∥平面B1CD.

查看答案和解析>>

科目: 来源: 题型:选择题

10.若函数y=x2-2x-1在区间(-∞,2a-2]上是减函数,则实数a的取值范围是(  )
A.$(-∞,\frac{3}{2}]$B.$(-∞,-\frac{3}{2}]$C.$[\frac{3}{2},+∞)$D.$[-\frac{3}{2},+∞)$

查看答案和解析>>

科目: 来源: 题型:填空题

9.已知$\{{a_n}\}(n∈{N^*})满足:{a_n}=\left\{\begin{array}{l}n(n=1,2,3,4,5,6)\\-{a_{n-3}}(n≥7且n∈{N^*})\end{array}\right.,则{a_{2015}}$=5,S2015=15.

查看答案和解析>>

科目: 来源: 题型:解答题

8.在平面直角坐标系xOy中,以原点O为极点,以x轴非负半轴为极轴建立极坐标系.已知直线l的方程为4ρcosθ-ρsinθ-25=0,曲线W:$\left\{\begin{array}{l}{x=2t}\\{y={t}^{2}-1}\end{array}\right.$(t是参数).
(1)求直线l的直角坐标方程与曲线W的普通方程;
(2)若点P在直线l上,Q在曲线W上,求|PQ|的最小值.

查看答案和解析>>

科目: 来源: 题型:选择题

7.已知定义在R上的函数f(x)=x2+5,记a=f(-log25),b=f(log23),c=f(-1),则a,b,c的大小关系为(  )
A.c<b<aB.a<c<bC.c<a<bD.a<b<c

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知向量$\overrightarrow a$与$\overrightarrow b$的夹角为θ,定义$\overrightarrow a×\overrightarrow b$为$\overrightarrow a$与$\overrightarrow b$的“向量积”,且$\overrightarrow a×\overrightarrow b$是一个向量,它的长度$|\overrightarrow a×\overrightarrow b|=|{\overrightarrow a}||{\overrightarrow b}|sinθ$,若$\overrightarrow u=(2,0),\overrightarrow u-\overrightarrow v=(1,-\sqrt{3})$,则|$\overrightarrow u×(\overrightarrow u-\overrightarrow v)$|=(  )
A.$4\sqrt{3}$B.$\sqrt{3}$C.6D.$2\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图,已知D是等腰直角三角形△ABC斜边BC的中点,P是平面ABC外一点,PC⊥平面ABC,求证:AD⊥平面PBC.

查看答案和解析>>

科目: 来源: 题型:填空题

4.将4个不同的球随机地放入3个盒子中,则每个盒子中至少有一个球的概率等于$\frac{4}{9}$.(用分数作答)

查看答案和解析>>

同步练习册答案