相关习题
 0  232584  232592  232598  232602  232608  232610  232614  232620  232622  232628  232634  232638  232640  232644  232650  232652  232658  232662  232664  232668  232670  232674  232676  232678  232679  232680  232682  232683  232684  232686  232688  232692  232694  232698  232700  232704  232710  232712  232718  232722  232724  232728  232734  232740  232742  232748  232752  232754  232760  232764  232770  232778  266669 

科目: 来源: 题型:填空题

16.函数f(x)=(${\frac{1}{2}}$)x在区间[-1,2]上的最大值为2.

查看答案和解析>>

科目: 来源: 题型:填空题

15.定义函数y=f(x),x∈I,若存在常数M,对于任意x1∈I,存在唯一的x2∈I,使得$\frac{f({x}_{1})+f({x}_{2})}{2}$=M,则称函数f(x)在I上的“均值”为M,已知f(x)=log2x,x∈[1,22017],则函数f(x)=log2x在∈[1,22017]上的“均值”为$\frac{2017}{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知m∈R,i为虚数单位,若$\frac{1-2i}{m-i}$>0,则m=(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.-2

查看答案和解析>>

科目: 来源: 题型:填空题

13.已知函数y=loga(x-1)+3(a>0,a≠1)所过定点的横、纵坐标分别是等差数列{an}的第二项与第三项,若bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,数列{bn}的前n项和为Tn,则T10等于$\frac{10}{11}$.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知函数f(x)=$\frac{{(1-a){x^2}-ax+a}}{e^x}$.
(1)当a=1时,求曲线y=f(x)在(1,f(1))处的切线方程;
(2)x≥0时,f(x)的最大值为a,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知函数f(x)=ax2+$\frac{2}{x}$,其中a为实数.
(1)根据a的不同取值,判断函数f(x)的奇偶性,并说明理由;
(2)若a∈(1,3),判断函数f(x)在[1,2]上的单调性,并用定义证明.

查看答案和解析>>

科目: 来源: 题型:解答题

10.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{3}$$\frac{5π}{6}$
Asin(ωx+φ)05-50
(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向左平行移动$\frac{π}{6}$个单位长度,得到y=g(x)图象,求出y=g(x)在区间[0,$\frac{2π}{3}}$]上的最小值和取得最小值时x的值.

查看答案和解析>>

科目: 来源: 题型:填空题

9.已知x,y均为正数,θ∈(${\frac{π}{4}$,$\frac{π}{2}}$),且满足$\frac{cosθ}{x}$=$\frac{sinθ}{y}$,$\frac{{{{sin}^2}θ}}{x^2}$+$\frac{{{{cos}^2}θ}}{y^2}$=$\frac{10}{{3({x^2}+{y^2})}}$,则$\frac{{(x+y{)^2}}}{{{x^2}+{y^2}}}$的值为$\frac{{1+\sqrt{3}}}{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

8.已知函数y=sinωx(ω>0)在区间[0,$\left.{\frac{π}{3}}$]上为增函数,且图象关于点(3π,0)对称,则ω的最大值为$\frac{4}{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

7.已知f(x)是奇函数,当x<0时,f(x)=x3+x2,则f(2)=(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案