相关习题
 0  232628  232636  232642  232646  232652  232654  232658  232664  232666  232672  232678  232682  232684  232688  232694  232696  232702  232706  232708  232712  232714  232718  232720  232722  232723  232724  232726  232727  232728  232730  232732  232736  232738  232742  232744  232748  232754  232756  232762  232766  232768  232772  232778  232784  232786  232792  232796  232798  232804  232808  232814  232822  266669 

科目: 来源: 题型:填空题

12.在等式sin(  )(1+$\sqrt{3}$tan70°)=1的括号中,填写一个锐角,使得等式成立,这个锐角是10°.

查看答案和解析>>

科目: 来源: 题型:填空题

11.在△ABC中,若对任意t∈R,恒有|$\overrightarrow{BA}$-t$\overrightarrow{BC}$|≥|$\overrightarrow{AC}$|,则∠C=90°.

查看答案和解析>>

科目: 来源: 题型:填空题

10.已知关于x的不等式组$\left\{\begin{array}{l}{1≤k{x}^{2}+2}\\{x+k≤2}\end{array}\right.$有唯一实数解,则实数k的取值集合{$1+\sqrt{2}$,$\frac{1-\sqrt{5}}{2}$}.

查看答案和解析>>

科目: 来源: 题型:选择题

9.若函数$f(x)=({1+\sqrt{3}tanx})cosx,0≤x≤\frac{π}{2}$,则f(x)的最大值为(  )
A.1B.2C.$\sqrt{3}+1$D.$\sqrt{3}+2$

查看答案和解析>>

科目: 来源: 题型:解答题

8.在某项娱乐活动的海选过程中,评分人员需对同批次的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于60分的选手定为合格选手,直接参加第二轮比赛,不超过40分的选手将直接被淘汰,成绩在(40,60)内的选手可以参加复活赛,如果通过,也可以参加第二轮比赛.
(1)已知成绩合格的200名参赛选手成绩的频率分布直方图如图,估计这200名参赛选手的成绩平均数和中位数;
(2)根据已有的经验,参加复活赛的选手能够进入第二轮比赛的概率如表:
参赛选手成绩所在区间 (40,50](50,60)
 每名选手能够进入第二轮的概率$\frac{1}{2}$$\frac{2}{3}$
假设每名选手能否通过复活赛相互独立,现有3名选手的成绩分别为(单位:分)45,52,58,记这3名选手在复活赛中通过的人数为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知定义在(-1,1)上的奇函数f(x),在x∈(-1,0)时,f(x)=2x+2-x
(1)求f(x)在(-1,1)上的表达式;
(2)用定义证明f(x)在(-1,0)上是减函数;
(3)若对于x∈(0,1)上的每一个值,不等式m•2x•f(x)<4x-1恒成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知三棱锥P-ABC的所有顶点都在球O的球面上,PC为球O的直径,且PC⊥OA,PC⊥OB,△AOB为等边三角形,三棱锥P-ABC的体积为$\frac{{6\sqrt{3}}}{3}$,则球O的表面积为(  )
A.B.C.12πD.16π

查看答案和解析>>

科目: 来源: 题型:选择题

5.在空间直角坐标系Oxyz中,设点M是点N(2,-1,4)关于坐标平面xOy的对称点,点P(1,3,2)关于x轴的对称点为Q,则线段MQ的长度等于(  )
A.3B.$\sqrt{21}$C.$\sqrt{53}$D.$\sqrt{61}$

查看答案和解析>>

科目: 来源: 题型:填空题

4.已知实数x,y满足$\left\{{\begin{array}{l}{x-2y+1≥0}\\{|x|-y-1≤0}\end{array}}\right.$,则z=$\frac{2x+y+2}{x}$的取值范围是(-∞,0]∪[$\frac{10}{3}$,+∞).

查看答案和解析>>

科目: 来源: 题型:填空题

3.已知△ABC,若存在△A1B1C1,满足$\frac{cosA}{sin{A}_{1}}$=$\frac{cosB}{cos{B}_{1}}$=$\frac{cosC}{sin{C}_{1}}$=1,则称△A1B1C1是△ABC的一个“友好”三角形.若等腰△ABC存在“友好”三角形,则其顶角的度数为$\frac{π}{4}$.

查看答案和解析>>

同步练习册答案