相关习题
 0  232648  232656  232662  232666  232672  232674  232678  232684  232686  232692  232698  232702  232704  232708  232714  232716  232722  232726  232728  232732  232734  232738  232740  232742  232743  232744  232746  232747  232748  232750  232752  232756  232758  232762  232764  232768  232774  232776  232782  232786  232788  232792  232798  232804  232806  232812  232816  232818  232824  232828  232834  232842  266669 

科目: 来源: 题型:填空题

12.设等差数列{an}满足:公差d∈N*,an∈N*,且{an}中任意两项之和也是该数列中的一项,若a1=9.则d的所有可能取值为1,3,9.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知函数f(x)=x+$\frac{a^2}{x}$,g(x)=x+lnx,其中a≥1.
(1)若x=2是函数f(x)的极值点,求h(x)=f(x)+g(x)在(1,h(1))处的切线方程;
(2)若对任意的x1,x2∈[1,e](e为自然对数的底数)都有f(x1)≥g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知函数f(x)=Asin(ωx+φ)+1(A>0,ω>0,-$\frac{π}{2}$≤φ≤$\frac{π}{2}$)的图象关于直线x=$\frac{π}{3}$对称,最大值为3,且图象上相邻两个最高点的距离为π.
(1)求f(x)的最小正周期;
(2)求函数f(x)的解析式;
(3)若f($\frac{θ}{2}$+$\frac{π}{3}$)=$\frac{7}{5}$,求sinθ.

查看答案和解析>>

科目: 来源: 题型:选择题

9.将函数y=3cos(2x+$\frac{π}{3}$)的图象向右平移m(m>0)个长度单位后,所得到的图象关于原点对称,则m的最小值是(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{5π}{12}$

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知α是第三象限角,tanα=$\frac{4}{3}$,则cosα=(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.-$\frac{3}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

科目: 来源: 题型:选择题

7.设U=R,A={x|x2-3x-4>0},B={x|x2-4<0},则(∁UA)∩B=(  )
A.{x|x≤-1,或x≥2}B.{x|-1≤x<2}C.{x|-1≤x≤4}D.{x|x≤4}

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知x≠1,0,则1+3x+5x 2+…+(2n-1)xn-1=(  )
A.$\frac{{1+x-(2n+1){x^n}+(2n-1){x^{n+1}}}}{{{{(1-x)}^2}}}$B.$\frac{{1+x-(2n+1){x^n}+(2n-1){x^{n+1}}}}{1-x}$
C.$\frac{{1+x-(2n+1){x^n}+(2n-3){x^{n+1}}}}{{{{(1-x)}^2}}}$D.$\frac{{1+x-(2n-1){x^n}+(2n+1){x^{n+1}}}}{{{{(1-x)}^2}}}$

查看答案和解析>>

科目: 来源: 题型:填空题

5.设$\overrightarrow{a}$,$\overrightarrow b$为非零向量,则“向量$\overrightarrow{a,}\overrightarrow b$的夹角为锐角”是“$\overrightarrow{a}$•$\overrightarrow{b}$>0”的充分不必要条件(填“充分不必要”.“必要不充分”,“充要”或“既不充分也不必要”).

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1.若a、b∈[-1,1],a+b≠0,有 $\frac{f(a)+f(b)}{a+b}$>0成立.
(1)判断函数f(x)在[-1,1]上是增函数还是减函数;
(2)解不等式f(x+$\frac{1}{2}$)>f(2x-1);
(3)若f(x)≤m2-2am+1对所有x∈[-1,1],a∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

3.两个集合A,B之差记作“A-B”,定义为A-B={x|x∈A且x∉R},如果集合A={x|0<x<2},B={x|1<x<3},那么A-B={x|0<x≤1}.

查看答案和解析>>

同步练习册答案