相关习题
 0  232667  232675  232681  232685  232691  232693  232697  232703  232705  232711  232717  232721  232723  232727  232733  232735  232741  232745  232747  232751  232753  232757  232759  232761  232762  232763  232765  232766  232767  232769  232771  232775  232777  232781  232783  232787  232793  232795  232801  232805  232807  232811  232817  232823  232825  232831  232835  232837  232843  232847  232853  232861  266669 

科目: 来源: 题型:填空题

10.已知一个动点M在圆x2+y2=36上移动,它与定点Q(4,0)所连线段的中点为P,则点P的轨迹方程(x-2)2+y2=9.

查看答案和解析>>

科目: 来源: 题型:选择题

9.(文)已知椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1(a>b>0),F1,F2是它的左右焦点,过F1的直线AB与椭圆交于AB两点,则△ABF2的周长为(  )
A.8B.10C.32D.16

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知定义在R上的奇函数f(x),当x>0时,f(x)=lnx-ax+1(a∈R).
(1)求动点f(x)的解析式;
(2)当a=1,求函数f(x)的单调区间;
(3)若函数y=f(x)在R上恰好有5个零点,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图,设椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦点为F1,F2,上顶点为A,点B和点F2关于F1对称,且AB⊥AF2,A,B,F2三点确定的圆M恰好与直线$x-\sqrt{3}y-3=0$相切.
(1)求椭圆的方程C;
(2)过F1作一条与两坐标轴都不垂直的直线l交椭圆于P,Q零点,在x轴上是否存在点N,使得NF1恰为△PNQ的内角平分线,若存在,求出点N的坐标,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,M是PD上的点,且AB=2,∠BAD=60°.
(1)求证:平面PBD⊥平面PAC;
(2)当OM∥平面PAB且三棱锥M-BCD的体积等于$\frac{{\sqrt{3}}}{4}$时,求点C到面PBD的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

5.某厂商调查甲乙两种不同型号汽车在10个不同地区卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图,为了鼓励卖场,在同型号汽车的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号的“星级卖场”
(1)求在这10个卖场中,甲型号汽车的“星级卖场”的个数;
(2)若在这10个卖场中,乙型号汽车销售量的平均数为26.7,求a<b的概率;
(3)若a=1,记乙型号汽车销售量的方差为s2,根据茎叶图推断b为何值时,s2达到最小值(只写出结论)
注:方差${s^2}=\frac{1}{n}[({x_1}-\overline x)+({x_2}-\overline x)+…+({x_n}-\overline x)]$其中$\overline x$为x1,x2,…,xn的平均数.

查看答案和解析>>

科目: 来源: 题型:选择题

4.已知点E、F、G分别为正方体ABCD-A1B1C1D1的棱AB、BC、$B_1^{\;}{C_1}$的中点,如图,则下列命题为假命题的是(  )
A.点P在直线FG上一定,总有AP⊥DE
B.点Q在直线BC1上运动时,三棱锥A-D1QC的体积为定值
C.点M是正方体面A1B1C1D1内的点到点D和点C1距离相等的点,则M的轨迹是一条直线
D.过F,D1,G的截面是正方形

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知集合U=R,A={x|0≤x≤2},B={y|y=2x,x∈R},则(∁UA)∩B=(  )
A.(-∞,0)B.(0,1)C.(1,2]D.(2,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

2.抛物线y=$\frac{1}{8}{x^2}$的准线方程是(  )
A.x=-2B.x=-4C.y=-2D.y=-4

查看答案和解析>>

科目: 来源: 题型:填空题

1.双曲线x2-y2=8的在左、右焦点分别是F1、F2,点Pn(xn,yn)(n=1,2,3,…)在其右支上,且满足|Pn+1F2|=|PnF1|,P1F2⊥F1F2,则x2016的值是8064.

查看答案和解析>>

同步练习册答案