相关习题
 0  232734  232742  232748  232752  232758  232760  232764  232770  232772  232778  232784  232788  232790  232794  232800  232802  232808  232812  232814  232818  232820  232824  232826  232828  232829  232830  232832  232833  232834  232836  232838  232842  232844  232848  232850  232854  232860  232862  232868  232872  232874  232878  232884  232890  232892  232898  232902  232904  232910  232914  232920  232928  266669 

科目: 来源: 题型:选择题

13.设f(x)=ax2+bx+2是定义在[1+a,2]上的偶函数,则(-3)b+3${\;}^{-\sqrt{1-a}}$=(  )
A.$\frac{10}{9}$B.$\frac{1}{9}$C.10D.D、不能确定

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知a>b,ab≠0,下列不等式中恒成立的有(  )
①a2>b2②2a>2b③a${\;}^{\frac{1}{3}}$>b${\;}^{\frac{1}{3}}$④$\frac{1}{a}$<$\frac{1}{b}$⑤($\frac{1}{3}$)a<($\frac{1}{3}$)b
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知数列{an}和{bn}满足a1=2,b1=1,${a_{n+1}}=2{a_n}(n∈{N^*})$,${b_1}+\frac{1}{2}{b_2}+\frac{1}{3}{b_3}+…+\frac{1}{n}{b_n}={b_{n+1}}-1(n∈{N^*})$
(1)求an与bn
(2)记cn=$\frac{1}{{{a}_{n}a}_{n+1}}$-$\frac{1}{{{b}_{n}b}_{n+1}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:填空题

10.已知函数$f(x)=2sin(ωx+φ)(ω>0,|φ|<\frac{π}{2})$的最小正周期为π,则ω=2;若其图象向右平移$\frac{π}{3}$个单位后得到的函数为偶函数,则φ的值为$\frac{π}{6}$.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数$f(x)=\frac{{{3^x}-1}}{{{3^x}+1}}$,
(Ⅰ)判断f(x)在R上的单调性,并加以证明;
(Ⅱ)当x∈[1,2]时,$f(ax-1)+f(\frac{1}{2x})≤0$恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知f(x)为定义在[-1,1]上的奇函数,当x∈[-1,0]时,函数解析式为$f(x)=\frac{1}{4^x}-\frac{1}{2^x}$.
(Ⅰ)求f(x)在[0,1]上的解析式;
(Ⅱ)求f(x)在[0,1]上的最值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知函数f(x)=loga$\frac{x-5}{x+5}$(a>0且a≠1).
(1)判断f(x)的奇偶性,并加以证明;
(2)设g(x)=loga(x-3),h(x)=f(x)-g(-x)-1在其定义域内有零点,求a的取值范围;
(3)是否存在实数m使得f(x+2)+f(m-x)为常数?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

6.根据如图所示的伪代码,可知输出的S的值为13.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知数列{an}的前n项和Sn满足:Sn=t(Sn-an+1)(t为常数,且t≠0,t≠1).
(1)证明:{an}成等比数列;
(2)设${b_n}=a_n^2+{S_n}•{a_n}$,若数列{bn}为等比数列,求t的值;
(3)在满足条件(2)的情形下,设cn=4an+1,数列{cn}的前n项和为Tn,若不等式$\frac{12k}{4+n-{T}_{n}}$≥2n-7对任意的n∈N*恒成立,求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

4.$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的上顶点P,Q($\frac{4}{3},\frac{b}{3}$)是椭圆上的一点,以PQ为直径的圆经过椭圆的右焦点F.
(1)求椭圆的方程;
(2)若直线y=kx+m与x2+y2=$\frac{2}{3}$相切,与椭圆交于A,B两点,当A,B两点横坐标不相等时,证明:以AB为直径的圆恰过原点O.

查看答案和解析>>

同步练习册答案