相关习题
 0  232847  232855  232861  232865  232871  232873  232877  232883  232885  232891  232897  232901  232903  232907  232913  232915  232921  232925  232927  232931  232933  232937  232939  232941  232942  232943  232945  232946  232947  232949  232951  232955  232957  232961  232963  232967  232973  232975  232981  232985  232987  232991  232997  233003  233005  233011  233015  233017  233023  233027  233033  233041  266669 

科目: 来源: 题型:解答题

4.已知cosx=-$\frac{\sqrt{2}}{10}$,x∈($\frac{π}{2}$,π).
(1)求sinx的值;
(2)求tan(2x+$\frac{π}{4}$)的值.

查看答案和解析>>

科目: 来源: 题型:解答题

3.设函数f(x)是定义在区间(-∞,+∞)上以2为周期的函数,记Ik=(2k-1,2k+1](k∈Z).已知当x∈I0时,f(x)=x2,如图.
(1)求函数f(x)的解析式;
(2)求使方程f(x)=ax在Ik(k∈N*)上有两个不相等实数根的关于a的集合Mk

查看答案和解析>>

科目: 来源: 题型:解答题

2.(1)已知角α终边上一点P(-4,3),求$\frac{{cos(\frac{π}{2}+α)sin(-π-α)}}{{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}}$的值.
(2)已知sinα+cosα=$\frac{1}{5}$,0≤α≤π,求cos(2α-$\frac{π}{4}$).

查看答案和解析>>

科目: 来源: 题型:解答题

1.某校有1400名考生参加市模拟考试,现采用分层抽样的方法从文、理考生中分别抽取20份和50份数学试卷,进行成绩分析.得到下面的成绩频率分布表:
分数分值[0,30)[30,60)[60,90)[90,120)[120,150)
文科频数24833
理科频数3712208
(1)估计文科数学平均分及理科考生的及格人数(90分为及格分数线);
(2)在试卷分析中,发现概念性失分非常严重,统计结果如下:
文科理科
概念1530
其它520
问是否有90%的把握认为概念失分与文、理考生的不同有关?(本题可以参考独立性检验临界值表)
附参考公式与数据:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k)0.50.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知等差数列{an}的公差为2,若a3=4,求a12

查看答案和解析>>

科目: 来源: 题型:填空题

19.为了调查市民对某活动的认可程度,研究人员对其所在地区年龄在10~60岁间的n位市民作出调查,并将统计结果绘制成频率分布直方图如图所示,若被调查的年龄在20~30岁间的市民有480人,则可估计被调查的年龄在40~50岁间的市民有320人.

查看答案和解析>>

科目: 来源: 题型:填空题

18.设f(x)=$\frac{4}{{4}^{x}+2}$,Sn为数列{an}的前n项和,{an}满足a1=0,n≥2时,an=f($\frac{1}{n}$)+f($\frac{2}{n}$)+f($\frac{3}{n}$)+…+f($\frac{n-1}{n}$),则$\frac{{a}_{n+1}}{2{S}_{n}+{a}_{6}}$的最大值为$\frac{2}{7}$.

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右顶点分别为A1,A2,P,Q,T为椭圆异于A1,A2的点,若椭圆C的焦距为2$\sqrt{2}$,且椭圆过点M($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{7}}{2}$).
(1)求椭圆C的方程;
(2)若△OPQ的面积为$\sqrt{2}$,A1R∥OP,求证:OQ∥A2R.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知函数f(x)=x3+2x
(1)求在点(0,0)处曲线y=f(x)的切线方程;
(2)求过点(-1,-3)的曲线y=f(x)的切线方程.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知单调递增的等差数列{an}中,a1+a2+a3=21,a1a2a3=231.
(1)求数列中a2的值;
(2)求数列的通项公式an

查看答案和解析>>

同步练习册答案