相关习题
 0  232848  232856  232862  232866  232872  232874  232878  232884  232886  232892  232898  232902  232904  232908  232914  232916  232922  232926  232928  232932  232934  232938  232940  232942  232943  232944  232946  232947  232948  232950  232952  232956  232958  232962  232964  232968  232974  232976  232982  232986  232988  232992  232998  233004  233006  233012  233016  233018  233024  233028  233034  233042  266669 

科目: 来源: 题型:解答题

14.如图,在三棱锥P-ABC中,PC⊥底面ABC,AB⊥BC,D、E分别是AB、PB的中点.
(1)求证:DE∥平面PAC;
(2)求证:平面PAB⊥平面PBC.

查看答案和解析>>

科目: 来源: 题型:解答题

13.某烹饪学院为了弘扬中国传统的饮食文化,举办了一场由在校学生参加的处以大赛,组委会为了了解本次大赛参赛学生的成绩情况,从参赛学生中抽取了n名学生的成绩(满分100分)作为样本,将所得数经过分析整理后画出了评论分布直方图和茎叶图,其中茎叶图收到污染,请据此解答下列问题:
(1)求频率分布直方图中a,b的值并估计此次参加厨艺大赛学生的平均成绩;
(2)规定大赛成绩在[80,90)的学生为厨霸,在[90,100]的学生为厨神,现从被称为厨霸、厨神的学生中随机抽取2人取参加校际之间举办的厨艺大赛,求所取2人总至少有1人是厨神的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知函数f(x)=sin(2x+φ),其中φ为实数且|φ|<π,若f(x)≤|f($\frac{π}{6}$)|对x∈R恒成立,且f($\frac{π}{2}$)>f(π),求
(1)求f(x)的单调递增区间.
(2)求f(x)的零点.

查看答案和解析>>

科目: 来源: 题型:解答题

11.为了适应市场需要,某地准备建一个圆形生猪储备基地(如图),它的附近有一条公路,从基地中心O处向东走1km是储备基地的边界上的点A,接着向东再走7km到达公路上的点B;从基地中心O向正北走8km到达公路的另一点C.现准备在储备基地的边界上选一点D,修建一条由D通往公路BC的专用线DE,求DE的最短距离.

查看答案和解析>>

科目: 来源: 题型:解答题

10.化简
(1)$\frac{cos(α-\frac{π}{2})}{sin(\frac{5}{2}π+α)}$•sin(α-π)•cos(2π-α);  
(2)$\frac{{\sqrt{1-2sin20°cos200°}}}{{cos160°-\sqrt{1-{{cos}^2}20°}}}$.

查看答案和解析>>

科目: 来源: 题型:填空题

9.对于函数f(x)=$\left\{\begin{array}{l}sinx,当sinx≥cosx\\ cosx,当sinx<cosx\end{array}$,给出下列四个命题:
①该函数的值域为[-1,1];
②当且仅当x=2kπ+$\frac{π}{2}$(k∈Z)时,该函数取得最大值;
③该函数是以为π最小正周期的周期函数;
④当且仅当2kπ+π<x<2kπ+$\frac{3}{2}$π时,f(x)<0,
上述命题中错误的是①②③.

查看答案和解析>>

科目: 来源: 题型:填空题

8.在x轴上有一点P,它与点P1(4,1,2)之间的距离为$\sqrt{30}$,则点P的坐标是(9,0,0)或(-1,0,0).

查看答案和解析>>

科目: 来源: 题型:填空题

7.已知实数x,y满足条件$\left\{{\begin{array}{l}{x+y-3≥0}\\{x-y-3≤0}\\{y≤2}\end{array}}\right.$,则$\frac{x}{x+y}$的取值范围是[$\frac{1}{3}$,1].

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知函数 f( x)=a-$\frac{1}{{2}^{x}+1}$( x∈R).
(1)若 f( x)为奇函数,求 a的值;
(2)在(1)的条件下,求 f( x)在区间[1,5]上的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知a,b为常数,且a≠0,f(x)=ax2+bx,f(2)=0.
(1)若函数y=f(x)-x有唯一零点,求函数f(x)的解析式;
(2)求函数f(x)在区间[-1,2]上的最大值;
(3)当x≥2时,不等式f(x)≥2-a恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案