相关习题
 0  232855  232863  232869  232873  232879  232881  232885  232891  232893  232899  232905  232909  232911  232915  232921  232923  232929  232933  232935  232939  232941  232945  232947  232949  232950  232951  232953  232954  232955  232957  232959  232963  232965  232969  232971  232975  232981  232983  232989  232993  232995  232999  233005  233011  233013  233019  233023  233025  233031  233035  233041  233049  266669 

科目: 来源: 题型:选择题

4.设曲线y=f(x)(x∈R)上任一点(x0,f(x0))处的切线斜率为k=(x0-2)(x0+1)2,则(  )
A.f(x)有唯一的极小值f(2)B.f(x)既有极小值f(2)又有极大值f(-1)
C.f(x)在(-∞,2)上为增函数D.f(x)在(-∞,-1)∪(-1,2)上为增函数

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图,椭圆的中心在原点,其左焦点F1与抛物线y2=-4x的焦点重合,过点F1的直线l与椭圆交于A,B两点,与抛物线交于C,D两点,当直线l与x轴垂直时,$\frac{|CD|}{|AB|}$=2$\sqrt{2}$.
(1)求椭圆的方程;
(2)设F2是椭圆的右焦点,求$\overrightarrow{{F_2}A}$•$\overrightarrow{{F_2}B}$的最大值和最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

2.在直四棱柱ABCD-A1B1C1D1中,AA1=2,底面是边长为1的正方体,E,F分别是棱B1B,DA的中点.
(1)求证:BF∥平面AD1E;
(2)求二面角D1-AE-C的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

1.数列{an}的前n项和为Sn,满足:Sn=f(n)=n2+2a|n-2|.
(1)若数列{an}为递增数列,求实数a的取值范围;
(2)当a=$\frac{1}{2}$时,设数列{bn}满足:bn=2an,记{bn}的前n项和为Tn,求Tn,并求满足不等式Tn>2015的最小整数n.

查看答案和解析>>

科目: 来源: 题型:填空题

20.设a∈R,函数f(x)=x|x-a|-a,若对任意的x∈[2,3],f(x)≥0恒成立,则a的取值范围是(-∞,$\frac{4}{3}$]∪[$\frac{9}{2}$,+∞).

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知椭圆的焦点是F1(0,-$\sqrt{3}$),F2(0,$\sqrt{3}$),离心率e=$\frac{{\sqrt{3}}}{2}$,若点P在椭圆上,且$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$=$\frac{2}{3}$,则∠F1PF2的大小为(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

18.在四面体ABCD中,AB=CD=$\sqrt{10}$,AC=BD=$\sqrt{5}$,AD=BC=$\sqrt{13}$,则四面体的外接球的表面积为(  )
A.6$\sqrt{3}$πB.8$\sqrt{3}$πC.14πD.16π

查看答案和解析>>

科目: 来源: 题型:选择题

17.在平面直角坐标系xOy中,点P为双曲线x2-2y2=1的左支上的一个动点,若点P到直线x+$\sqrt{2}$y-3=0的距离大于c恒成立,则实数c的最大值为(  )
A.1B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{6}}}{6}$

查看答案和解析>>

科目: 来源: 题型:选择题

16.设A={(m,n)|0<m<2,0<n<2},则任取(m,n)∈A,关于x的方程$\frac{m}{4}$x2+x+n=0有实根的概率为(  )
A.$\frac{1+2ln2}{4}$B.$\frac{1+ln2}{2}$C.$\frac{3-2ln2}{4}$D.$\frac{1-ln2}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

15.如下程序框图是由直角三角形两条直角边a,b求斜边的算法,其中正确的是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案