相关习题
 0  232904  232912  232918  232922  232928  232930  232934  232940  232942  232948  232954  232958  232960  232964  232970  232972  232978  232982  232984  232988  232990  232994  232996  232998  232999  233000  233002  233003  233004  233006  233008  233012  233014  233018  233020  233024  233030  233032  233038  233042  233044  233048  233054  233060  233062  233068  233072  233074  233080  233084  233090  233098  266669 

科目: 来源: 题型:选择题

2.P是椭圆C:$\frac{x^2}{4}+{y^2}$=1上的动点,以P为切点作椭圆C的切线l,交圆x2+y2=4于A,B两点,当△ABO的面积最大时,直线l的斜率k=(  )
A.±1B.$±\sqrt{2}$C.$±\frac{{\sqrt{2}}}{2}$D.$±\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

1.设函数f(x)在R上存在导数f′(x),?x∈R,有f(-x)+f(x)=x2,在(0,+∞)上f′(x)<x,若f(2-m)+f(-m)+2m-2≥0,则实数m的取值范围为(  )
A.[-1,1]B.[1,+∞)C.[2,+∞)D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知全集U=R,集合A={x|x2-6x+5<0},B=$\left\{{\left.x\right|\frac{x-2}{x-4}>0}\right\}$,C={x|3a-2<x<4a-3}求:
(1)A∩B,∁U(A∪B);
(2)若C⊆A,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

19.在平面直角坐标系xOy中,直线l的参数方程$\left\{\begin{array}{l}{x=\sqrt{3}t}\\{y=2+t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为:ρ=4sinθ
(1)直线l的参数方程化为极坐标方程;
(2)求直线l与曲线C交点的极坐标(ρ≥0,0≤θ<2π)

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知函数f(x)是偶函数,当0≤x1<x2时,$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$>0恒成立,设a=f(-2),b=f(1),c=f(3),则a,b,c的大小关系为(  )
A.a<b<cB.b<c<aC.a<b<cD.b<a<c

查看答案和解析>>

科目: 来源: 题型:填空题

17.定义运算$|{\begin{array}{l}a&b\\ c&d\end{array}}|=ad-bc$,设函数$y=f(x)=|{\begin{array}{l}{sinx}&{\sqrt{3}}\\{cosx}&1\end{array}}|$,将函数y=f(x)向左平移m(m>0)个单位长度后,所得到图象关于y轴对称,则m的最小值是$\frac{5π}{6}$.

查看答案和解析>>

科目: 来源: 题型:填空题

16.已知函数f(x)=ax2+bx-1(a,b∈R且a>0 )有两个零点,其中一个零点在区间(1,2)内,则$\frac{b}{a+1}$的取值范围是(0,2).

查看答案和解析>>

科目: 来源: 题型:选择题

15.集合A={x|x2+2x-3=0},B={x|ax=1},A∪B=A,则实数a的取值可以是(  )
A.$1,-\frac{1}{3}$B.$-1,\frac{1}{3}$C.$1,-\frac{1}{3},0$D.$-1,\frac{1}{3},0$

查看答案和解析>>

科目: 来源: 题型:解答题

14.某部队为了在大阅兵中树立军队的良好形象,决定从参训的12名男兵和18名女兵中挑选出正式阅兵人员,这30名军人的身高如下:单位:cm,若身高在175cm(含175cm)以上,定义为“高个子”,身高在175cm以下,定义为“非高个子”,且只有“女高个子”才能担任“护旗手”.
(1)如果用分层抽样的方法从“高个子”和“非高个子”中选定5人,再从这5人中任选2人,那么至少有1人是“高个子”的概率是多少?
(2)若从所有“高个子”中任选3名军人,用ξ表示所选军人中能担任“护旗手”的人数,试写出ξ的分布列,并求ξ的数学期望.

查看答案和解析>>

科目: 来源: 题型:选择题

13.设等差数列{an}的前n项和为Sn,若S3=6,S4=12,则S7=(  )
A.40B.41C.42D.43

查看答案和解析>>

同步练习册答案