相关习题
 0  232916  232924  232930  232934  232940  232942  232946  232952  232954  232960  232966  232970  232972  232976  232982  232984  232990  232994  232996  233000  233002  233006  233008  233010  233011  233012  233014  233015  233016  233018  233020  233024  233026  233030  233032  233036  233042  233044  233050  233054  233056  233060  233066  233072  233074  233080  233084  233086  233092  233096  233102  233110  266669 

科目: 来源: 题型:解答题

2.在直角坐标平面内,把横坐标与纵坐标都为整数的点称为整点.已知区域D:$\left\{\begin{array}{l}{y≤2x}\\{x+y≤n}\\{y≥0}\end{array}\right.$,其中n∈N*.记区域D内的整点个数为an
(1)求a1,a2,a3的值;
(2)求an的表达式(n≥4,n∈N*

查看答案和解析>>

科目: 来源: 题型:解答题

1.甲、乙两人玩一种游戏:甲从放有4个红球、3个白球、3个黄球的箱子中任取一球,乙从放有5个红球、3个白球、2个黄球的箱子中任取一球.规定:当两球同色时为甲胜,当两球异色时为乙胜.
(1)求甲胜的概率;
(2)假设甲胜时甲取红球、白球、黄球的得分分别为1分、2分、3分,甲负时得0分,求甲得分数X的概率分布及数学期望EX.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知数列{an}中,an=2an-1+n(n≥2,n∈N).
(1){an}是否可能为等比数列?若可能,求出此等比数列的通项公式;若不可能,说明理由;
(2)设bn=(-1)n(an+n+2),Sn为数列{bn}的前n项和,且对于任意的n∈N*,n≤10,都有Sn<1,求a1的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

19.设F(c,0),A(-a,0)分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点和顶点,它的右准线为l:x=4,且椭圆C过点(c,$\frac{\sqrt{3}b}{2}$).
(1)求椭圆C的方程;
(2)设P,Q是右准线l上的两个动点,且PF⊥QF,直线AP,AQ分别与椭圆交于点M,N两点,求证:直线MN过一定点,并求出此定点的坐标.

查看答案和解析>>

科目: 来源: 题型:填空题

18.观察下列不等式:
$\begin{array}{l}\frac{1}{5}<\frac{1}{4},\\ \frac{1}{5}+\frac{1}{13}<\frac{1}{3}\\ \frac{1}{5}+\frac{1}{13}+\frac{1}{25}<\frac{3}{8}\\ \frac{1}{5}+\frac{1}{13}+\frac{1}{25}+\frac{1}{41}<\frac{2}{5}\\…\end{array}$
则第n个不等式为$\frac{1}{5}+\frac{1}{13}+…+\frac{1}{2{n}^{2}+2n+1}$<$\frac{n}{2n+2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知函数f(x)和g(x)均为奇函数,h(x)=a?f3(x)-b?g(x)-2在区间(0,+∞)上有最大值5,那么h(x)在(-∞,0)上的最小值为(  )
A.-5B.-9C.-7D.-1

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知全集U=R,函数y=$\sqrt{-{x}^{2}+2x+8}$的定义域为集合A,函数y=$\frac{(x-1)^{0}}{\sqrt{3-x}}$的定义域为集合B.
(1)求集合A和集合B;
(2)求A∪B,A∩(∁UB).

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知集合A={x|-2≤x≤4},B={x|a-2≤x≤2a},若A∩B=B,则a得取值范围为(  )
A.[0,2]B.(-∞,-2]C.(-∞,-2)∪[0,2]D.(-∞,-2]∪[0,2]

查看答案和解析>>

科目: 来源: 题型:填空题

14.设$f(x)=m({x+m})({x-2m-1}),g(x)=x-2+ln\frac{x}{2}$,若?x∈R(x)<0“与“g(x)<0“中至少有一个成立,则实数m的取值范围是(-2,0).

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,底面ABCD是以∠A=60°的菱形,PD⊥底面ABCD,且PD=CD,点M,N分别为棱AD,PC的中点证明:
(1)DN∥平面PMB;
(2)MB⊥平面PAD.

查看答案和解析>>

同步练习册答案