相关习题
 0  232996  233004  233010  233014  233020  233022  233026  233032  233034  233040  233046  233050  233052  233056  233062  233064  233070  233074  233076  233080  233082  233086  233088  233090  233091  233092  233094  233095  233096  233098  233100  233104  233106  233110  233112  233116  233122  233124  233130  233134  233136  233140  233146  233152  233154  233160  233164  233166  233172  233176  233182  233190  266669 

科目: 来源: 题型:填空题

1.如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m.经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=$\frac{4}{3}$.
(1)求新桥BC的长;
(2)当OM多长时,圆形保护区的面积最大?

查看答案和解析>>

科目: 来源: 题型:填空题

20.设函数f(x)=Acos(ωx+φ)(A,ω,φ是常数,A>0,ω>0).若f(x)在区间[0,$\frac{2π}{3}$]上具有单调性,且f(-$\frac{π}{3}$)=f(0)=-f($\frac{2π}{3}$),则ω=$\frac{6}{7}$.

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知定义在R上的函数f(x)满足:①图象关于(1,0)点对称;②f(-1+x)=f(-1-x);③当x∈[-1,1]时,f(x)=$\left\{\begin{array}{l}{1-{x}^{2},x∈[-1,0]}\\{cos\frac{π}{2}x,x∈(0,1]}\end{array}\right.$,则函数y=f(x)-($\frac{1}{2}$)|x|在区间[-3,3]上的零点个数为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知指数函数y=g(x)的图象过点(2,4),定义域为R,f(x)=$\frac{-g(x)+n}{2g(x)+m}$是奇函数.
(1)试确定函数y=g(x)的解析式;
(2)求实数m,n的值;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

17.对于函数f(x)=x${\;}^{\frac{1}{2}}}$定义域内的任意x1,x2且x1≠x2,给出下列结论:
(1)f(x1+x2)=f(x1)•f(x2
(2)f(x1•x2)=f(x1)•f(x2
(3)$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$>0
(4)f($\frac{{{x_1}+{x_2}}}{2}$)>$\frac{{f({x_1})+f({x_2})}}{2}$
其中正确结论为:(2)(3)(4).

查看答案和解析>>

科目: 来源: 题型:填空题

16.若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=x2+3x+1.则f(x)=x2+1.

查看答案和解析>>

科目: 来源: 题型:填空题

15.已知函数f(x)=x2-6x+8,x∈[1,a],并且f(x)的最大值为f(a),那么实数a的取值范围是[5,+∞).

查看答案和解析>>

科目: 来源: 题型:选择题

14.计算[(2$\sqrt{2}$+3)2(2$\sqrt{2}$-3)2]${\;}^{\frac{1}{3}}}$+8${\;}^{\frac{2}{3}}}$-2log510-log50.25=(  )
A.4.B.3.C.2.D.1.

查看答案和解析>>

科目: 来源: 题型:选择题

13.下列命题中,正确的是(  )
A.底面是正方形的四棱柱是正方体
B.棱锥的高线可能在几何体之外
C.有两个面互相平行,其余各面是平行四边形的几何体是棱柱
D.有一个面是多边形,其余各面都是三角形的几何体是棱锥

查看答案和解析>>

科目: 来源: 题型:解答题

12.在如图所示的四棱锥P-ABCD中,已知PA⊥平面ABCD,AD∥BC,∠BAD=90°,PA=AB=BC=1,AD=2,E为PD的中点.
(Ⅰ)求证:平面PAC⊥平面PDC;
(Ⅱ)求直线EC与平面PAC所成角的正切值.

查看答案和解析>>

同步练习册答案