相关习题
 0  233227  233235  233241  233245  233251  233253  233257  233263  233265  233271  233277  233281  233283  233287  233293  233295  233301  233305  233307  233311  233313  233317  233319  233321  233322  233323  233325  233326  233327  233329  233331  233335  233337  233341  233343  233347  233353  233355  233361  233365  233367  233371  233377  233383  233385  233391  233395  233397  233403  233407  233413  233421  266669 

科目: 来源: 题型:解答题

14.已知函数f(x)=$\frac{2x-1}{x+1}$.
(1)判断并证明函数f(x)在[0,+∞)的单调性;
(2)若x∈[1,m]时函数f(x)的最大值与最小值的差为$\frac{1}{2}$,求m的值.

查看答案和解析>>

科目: 来源: 题型:填空题

13.F1、F2是双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的两个焦点,P在双曲线上且满足|PF1|•|PF2|=$\frac{64}{3}$,则∠F1PF2=120°.

查看答案和解析>>

科目: 来源: 题型:选择题

12.在△ABC中,有一个内角为30°,“∠A>30°”是“sinA>$\frac{1}{2}$”的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知等差数列{an}的公差d=2,前n项的和为Sn.等比数列{bn}满足b1=a1,b2=a4,b3=a13
(I)求{an},{bn}及数列{bn}的前n项和Bn
(II)记数列{$\frac{1}{{S}_{n}}$}的前n项和为Tn,求Tn

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知数列{an},{bn}满足a1=1,b1=2,an+1=$\sqrt{{a_n}{b_n}}$,bn+1=$\frac{{{a_n}+{b_n}}}{2}$,
(1)求证:当n≥2时,an-1≤an≤bn≤bn-1
(2)设Sn为数列{|an-bn|}的前n项和,求证:Sn<$\frac{10}{9}$.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知奇函数f(x)=loga$\frac{b+ax}{1-ax}$,
(1)求b的值,并求出f(x)的定义域
(2)若存在区间[m,n],使得当x∈[m,n]时,f(x)的取值范围为[loga6m,loga6n],求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图:A是单位圆与x轴正半轴的交点,点B在单位圆上且B(-$\frac{3}{5}$,$\frac{4}{5}$),P是劣弧$\widehat{AB}$上一点(不包括端点A、B),∠AOP=θ,∠BOP=α,$\overrightarrow{OQ}$=$\overrightarrow{OA}$+$\overrightarrow{OP}$,四边形OAQP的面积为S.
(1)当θ=$\frac{π}{6}$时,求cosα;
(2)求$\overrightarrow{OA}$•$\overrightarrow{OQ}$+S的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

7.已知$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$是三个单位向量,且$\overrightarrow c$•$\overrightarrow a$=$\overrightarrow c$•$\overrightarrow b$>0,则对于任意的正实数t,|${\overrightarrow c$-t$\overrightarrow a$-$\frac{1}{t}$$\overrightarrow b}$|的最小值为$\frac{1}{2}$,则$\overrightarrow a$•$\overrightarrow b$=$\frac{1}{8}$或-$\frac{7}{8}$.

查看答案和解析>>

科目: 来源: 题型:填空题

6.若sin(α+$\frac{π}{6}}$)=$\frac{3}{5}$,则cos(${\frac{π}{3}$-α)=$\frac{3}{5}$;cos(2α-$\frac{π}{6}}$)=$±\frac{24}{25}$.

查看答案和解析>>

科目: 来源: 题型:填空题

5.设函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,则f[f(-2)]=2;使f(a)<0的a的取值范围是(0,1).

查看答案和解析>>

同步练习册答案