相关习题
 0  233357  233365  233371  233375  233381  233383  233387  233393  233395  233401  233407  233411  233413  233417  233423  233425  233431  233435  233437  233441  233443  233447  233449  233451  233452  233453  233455  233456  233457  233459  233461  233465  233467  233471  233473  233477  233483  233485  233491  233495  233497  233501  233507  233513  233515  233521  233525  233527  233533  233537  233543  233551  266669 

科目: 来源: 题型:选择题

20.如图,正三角形ABC的中线AF与中位线DE相交于点G,已知△A′DE是△ADE绕边DE旋转过程中的一个图形.现给出下列命题:
①恒有直线BC∥平面A′DE;
②恒有直线DE⊥平面A′FG,
③恒有平面A′FG⊥平面A′DE.
其中正确命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目: 来源: 题型:选择题

19.在三棱柱ABC-A1B1C1中,A1A⊥平面ABC,AB=2BC,AC=AA1=$\sqrt{3}$BC,则直线AB1与平面BB1C1C所成的角的正切值为(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{13}}{4}$D.$\frac{\sqrt{39}}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

18.cos735°=(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{6}-\sqrt{2}}{4}$D.$\frac{\sqrt{6}+\sqrt{2}}{4}$

查看答案和解析>>

科目: 来源: 题型:填空题

17.函数f(x)同时满足:①对于定义域上的任意x,恒有f(-x)+f(x)=0;②对于定义域上的任意x1,x2,当x1≠x2时,恒有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}<0$,则称函数f(x)为“理想函数”,则下列四个函数中:①$f(x)=\frac{1}{x}$;②f(x)=x2,③$f(x)=\left\{\begin{array}{l}-{x^2}(x≥0)\\{x^2}(x<0)\end{array}\right.$;④$f(x)={log_{\frac{1}{2}}}(\sqrt{{x^2}+1}+x)$可以称为“理想函数”的有③④.

查看答案和解析>>

科目: 来源: 题型:解答题

16.化简、求值:
(1)(2a${\;}^{\frac{1}{4}}$b-${\;}^{\frac{1}{3}}$)(-3a-${\;}^{\frac{1}{2}}$b${\;}^{\frac{2}{3}}$)÷(-$\frac{1}{4}$a-${\;}^{\frac{1}{4}}$b-${\;}^{\frac{2}{3}}$)
(2)(log43+log83)(log32+log92)-log${\;}_{\frac{1}{2}}$$\root{4}{32}$.

查看答案和解析>>

科目: 来源: 题型:填空题

15.设f(x)是定义在R上的周期为2的函数,当x∈[-1,1)时,f(x)=$\left\{\begin{array}{l}{-4{x}^{2}+\frac{10}{9},-1≤x≤0}\\{lo{g}_{3}x,0<x<1}\end{array}\right.$,
则f(f($\frac{3}{2}$))=-2.

查看答案和解析>>

科目: 来源: 题型:选择题

14.过点P(-1,0)的直线l与抛物线y2=5x相切,则直线l的斜率为(  )
A.±$\frac{\sqrt{2}}{2}$B.±$\frac{\sqrt{3}}{2}$C.±$\frac{\sqrt{5}}{2}$D.±$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

13.已知U={y|y=lnx,x>1},A={y|y=$\frac{1}{x}$,x>3},则∁UA=(  )
A.$(0,\frac{1}{3})$B.(0,+∞)C.[$\frac{1}{3},+∞$)D.(-∞,0]∪[$\frac{1}{3},+∞$)

查看答案和解析>>

科目: 来源: 题型:填空题

12.以下四组函数:
①f(x)=cosx,g(x)=-sinx                 ②f(x)=sinx+cosx,g(x)=f′(x)
③f(x)=ax,g(x)=2•ax(其中a>0且a≠1)④f(x)=log2x,g(x)=log2(4x)
可以通过平移f(x)的图象得到g(x)图象的是①②③④.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知数列{an}的前n项和Sn和通项an满足2Sn+an=1,等差数列$\{\frac{1}{b_n}\}$中,${b_1}=1,{b_2}=\frac{1}{2}$.
(1)求数列{an},{bn}的通项公式;
(2)数列{cn}满足${c_n}=\frac{a_n}{b_n}$,求证:${c_1}+{c_2}+{c_3}+…+{c_n}<\frac{3}{4}$.

查看答案和解析>>

同步练习册答案