相关习题
 0  233406  233414  233420  233424  233430  233432  233436  233442  233444  233450  233456  233460  233462  233466  233472  233474  233480  233484  233486  233490  233492  233496  233498  233500  233501  233502  233504  233505  233506  233508  233510  233514  233516  233520  233522  233526  233532  233534  233540  233544  233546  233550  233556  233562  233564  233570  233574  233576  233582  233586  233592  233600  266669 

科目: 来源: 题型:填空题

18.如图,该程序运行后输出的结果为19.
 

查看答案和解析>>

科目: 来源: 题型:填空题

17.设平面向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(-2,y),若$\overrightarrow a$∥$\overrightarrow b$,则|$\overrightarrow a+3\overrightarrow b}$|=5$\sqrt{5}$.

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图①,在边长为2的正方形ABCD中,E,F分别是AB,BC的中点,现在沿DE,DF及EF把△ADE,△CDF和△BEF折起,使A,B,C三点重合,重合后的点记作P,如图②所示.
(1)求证:PD⊥EF;
(2)求二面角D-EF-P的平面角的正切值.
(3)求点P到平面DEF的距离

查看答案和解析>>

科目: 来源: 题型:解答题

15.作出下列各个函数图象的示意图.
(1)y=2x-1;
(2)y=log2(x-1);
(3)y=$\frac{2-x}{x-1}$.

查看答案和解析>>

科目: 来源: 题型:解答题

14.某校高二年级共1000人,从参加期末数学考试的学生中抽出20名学生,将其成绩(均为整数)分成六段[40,50),[50,60)…[90,100],然后画出如图所示频率分布直方图,但是缺失了第四组[70,80)的信息.观察图形的信息,回答下列问题.
(1)求第四组[70,80)的频率;并估计该年级分数在该段的人数.
(2)估计该年级这次数学考试的平均数.
(3)在样本中,从成绩是[50,60)和[60,70)的两段学生中任意选两人,求他们在同一分数段的概率.

查看答案和解析>>

科目: 来源: 题型:选择题

13.过平面区域$\left\{\begin{array}{l}{x-y+2≥0}\\{y+2≥0}\\{x+y+2≤0}\end{array}\right.$内一点P作圆O:x2+y2=1的两条切线,切点分别为A,B,记∠APB=α,当α最大时,此时点P坐标为(  )
A.(-2,0)B.(0,-2)C.(-4,-2)D.(-1,-1)

查看答案和解析>>

科目: 来源: 题型:填空题

12.直线y=xcosθ+1,(θ∈R)的倾斜角的范围是$[0,\frac{π}{4}]$∪$[\frac{3π}{4},π)$.

查看答案和解析>>

科目: 来源: 题型:选择题

11.到直线2x+y+1=0的距离为$\frac{{\sqrt{5}}}{5}$的点的集合为(  )
A.直线2x+y-2=0B.直线2x+y=0
C.直线2x+y=0或2x+y-2=0D.直线2x+y=0或直线2x+2y+2=0

查看答案和解析>>

科目: 来源: 题型:选择题

10.斜率为2的直线经过(3,5),(a,7)两点,则a的值是(  )
A.a=2B.a=-4C.a=4D.a=-2

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知点A的坐标为(1,0),P为半圆C:$\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}$(θ为参数,0≤θ≤π)上的点,弧$\widehat{AP}$的长度为$\frac{π}{3}$,O为坐标原点.
(1)以O为极点,x轴的正半轴为极轴建立极坐标系,求直线AP的极坐标方程;
(2)若M为半圆C上的动点,用半圆C的参数方程求点M到直线AP距离的最大值.

查看答案和解析>>

同步练习册答案