相关习题
 0  233466  233474  233480  233484  233490  233492  233496  233502  233504  233510  233516  233520  233522  233526  233532  233534  233540  233544  233546  233550  233552  233556  233558  233560  233561  233562  233564  233565  233566  233568  233570  233574  233576  233580  233582  233586  233592  233594  233600  233604  233606  233610  233616  233622  233624  233630  233634  233636  233642  233646  233652  233660  266669 

科目: 来源: 题型:选择题

20.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为2的两个全等的等腰直角三角形,则该几何体的外接球的表面积是(  )
A.$\frac{8}{3}$B.4$\sqrt{3}$πC.12πD.$\frac{8\sqrt{3}}{3}$π

查看答案和解析>>

科目: 来源: 题型:选择题

19.方程x2+y2-2x+m=0表示一个圆,则x的范围是(  )
A.m<1B.m<2C.m≤$\frac{1}{2}$D.m≤1

查看答案和解析>>

科目: 来源: 题型:选择题

18.两个整数315和2016的最大公约数是(  )
A.38B.57C.63D.83

查看答案和解析>>

科目: 来源: 题型:选择题

17.设点M(2,1,3)是直角坐标系O-xyz中一点,则点M关于x轴对称的点的坐标为(  )
A.(2,-1,-3)B.(-2,1,-3)C.(-2,-1,3)D.(-2,-1,-3)

查看答案和解析>>

科目: 来源: 题型:填空题

16.已知θ∈($\frac{π}{2}$,π),且cos(θ-$\frac{π}{4}$)=$\frac{3}{5}$,则tan(θ+$\frac{π}{4}$)=-$\frac{3}{4}$.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知整数n≥4,集合M={1,2,3,…,n}的所有含有4个元素的子集记为A1,A2,A3,…,${A_{C_n^4}}$.
设A1,A2,A3,…,${A_{C_n^4}}$中所有元素之和为Sn
(1)求S4,S5,S6并求出Sn
(2)证明:S4+S5+…+Sn=10Cn+26

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知a、b∈R,若M=$|\begin{array}{l}{-1}&{a}\\{b}&{3}\end{array}|$所对应的变换T把直线2x-y=3变换成自身,试求实数a、b.

查看答案和解析>>

科目: 来源: 题型:解答题

13.对于两个定义域均为D的函数f(x),g(x),若存在最小正实数M,使得对于任意x∈D,都有|f(x)-g(x)|≤M,则称M为函数f(x),g(x)的“差距”,并记作||f(x),g(x)||.
(1)求f(x)=sinx(x∈R),g(x)=cosx(x∈R)的差距;
(2)设f(x)=$\sqrt{x}$(x∈[1,e${\;}^{\frac{a}{2}}$]),g(x)=mlnx(x∈[1,e${\;}^{\frac{a}{2}}$]).(e≈2.718)
①若m=2,且||f(x),g(x)||=1,求满足条件的最大正整数a;
②若a=2,且||f(x),g(x)||=2,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,某广场中间有一块边长为2百米的菱形状绿化区ABCD,其中BMN是半径为1百米的扇形,∠ABC=$\frac{2π}{3}$.管理部门欲在该地从M到D修建小路:在$\widehat{MN}$上选一点P(异于M、N两点),过点P修建与BC平行的小路PQ.
(1)若∠PBC=$\frac{π}{3}$,求PQ的长度;
(2)当点P选择在何处时,才能使得修建的小路$\widehat{MP}$与PQ及QD的总长最小?并说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),离心率为$\frac{{\sqrt{2}}}{2}$,左准线方程是x=-2,设O为原点,点A在椭圆C上,点B在直线y=2上,且OA⊥OB.
(1)求椭圆C的方程;
(2)求△AOB面积取得最小值时,线段AB的长度.

查看答案和解析>>

同步练习册答案