相关习题
 0  233484  233492  233498  233502  233508  233510  233514  233520  233522  233528  233534  233538  233540  233544  233550  233552  233558  233562  233564  233568  233570  233574  233576  233578  233579  233580  233582  233583  233584  233586  233588  233592  233594  233598  233600  233604  233610  233612  233618  233622  233624  233628  233634  233640  233642  233648  233652  233654  233660  233664  233670  233678  266669 

科目: 来源: 题型:填空题

20.若函数f(x)=$\left\{\begin{array}{l}{-x+3,-1≤x≤1}\\{1+lo{g}_{({a}^{2}-1)}(2x),2≤x≤8}\end{array}\right.$的值域是[2,5],则实数a的取值是$±\sqrt{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

19.近年来青海玉树多次发生地震,给当地居民带来了不少灾难,其中以2010年4月1号的7.1级地震和2016年10月17号的6.2级地震带来的灾难较大;早在20世纪30年代,美国加州理工学院的地震物理学家里克特就制定了我们常说的里氏震级M,其计算公式为M=lgA-lgA0(其中A是被测地震的最大振幅,A0是“标准地震”的振幅),那么7.1级地震的最大振幅是6.2级地震的最大振幅的100.9倍.

查看答案和解析>>

科目: 来源: 题型:填空题

18.已知f(x)是定义在R上的函数,满足f(x)=-f(-x),且当x<0时,f(x)=x•$\root{3}{-1-x}$,则f(9)=18.

查看答案和解析>>

科目: 来源: 题型:选择题

17.下列函数是幂函数且在(0,+∞)上是增函数的是(  )
A.y=2x2B.y=x-1C.y=x${\;}^{\frac{1}{2}}$D.y=x3-x

查看答案和解析>>

科目: 来源: 题型:选择题

16.已知A={a,b,c},B={a,b},则下列关系不正确的是(  )
A.A∩B=BB.AB⊆BC.A∪B⊆AD.B?A

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知抛物线C:y2=8x的焦点为F,准线l与x轴的交点为M,点P在抛物线上,且|PM|=$\sqrt{2}$|PF|,则△PMF的面积为(  )
A.4B.8C.16D.32

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知函数f(x)=Asinωx(A>0,ω>0)在[-$\frac{π}{2}$,$\frac{2π}{3}$]上是增函数,则ω的最大值是(  )
A.1B.2C.$\frac{3}{4}$D.$\frac{3}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知f(x)=$\frac{a•{2}^{x}+a+2}{{2}^{x}+1}$(x∈R),若f(x)满足f(-x)=-f(x).
(1)求实数a的值;
(2)证明f(x)是R上的单调减函数(定义法).

查看答案和解析>>

科目: 来源: 题型:填空题

12.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如图).

(1)分别写出两种产品的收益与投资额的函数关系式;
(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知函数f(x)=$\frac{{{2^x}-a}}{{{2^x}+1}}$,(a>0).
(1)当a=2时,证明函数f(x)不是奇函数;
(2)判断函数f(x)的单调性,并利用函数单调性的定义给出证明;
(3)若f(x)是奇函数,且f(x)-x2+4x≥m在x∈[-2,2]时恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案