相关习题
 0  233511  233519  233525  233529  233535  233537  233541  233547  233549  233555  233561  233565  233567  233571  233577  233579  233585  233589  233591  233595  233597  233601  233603  233605  233606  233607  233609  233610  233611  233613  233615  233619  233621  233625  233627  233631  233637  233639  233645  233649  233651  233655  233661  233667  233669  233675  233679  233681  233687  233691  233697  233705  266669 

科目: 来源: 题型:选择题

18.已知等差数列{an},{bn}的前n项和为Sn,Tn,若对于任意的自然数n,都有$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n-3}{4n-1}$,则$\frac{{a}_{3}+{a}_{15}}{2({b}_{3}+{b}_{9})}$+$\frac{{a}_{3}}{{b}_{2}+{b}_{10}}$=(  )
A.$\frac{19}{43}$B.$\frac{17}{40}$C.$\frac{9}{20}$D.$\frac{27}{50}$

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知a,b,c分别为△ABC三个内角A,B,C的对边,且$\sqrt{3}$bsinA+acosB-2a=0.
(1)求∠B的大小;
(2)若b=$\sqrt{3}$,△ABC的面积为$\frac{\sqrt{3}}{2}$,求a,c的值.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知等差数列{an}满足:a5=9,a1+a7=14.
(1)求数列{an}的通项公式;
(2)若bn=an+3n,求数列{bn}的前n项和Sn

查看答案和解析>>

科目: 来源: 题型:填空题

15.已知集合M是满足下列条件的函数f(x)的全体:
(1)f(x)是偶函数但不是奇函数;
(2)函数f(x)有零点.那么在下列函数中:
①f(x)=1-|x|
 ②f(x)=ex+e-x-2
③f(x)=$\left\{\begin{array}{l}{x-2,x>0}\\{0,x=0}\\{x+2,x<0}\end{array}\right.$     
④f(x)=x2-x-1+lnx
⑤f(x)=2sin(x-$\frac{π}{2}$)-1
属于集合M的有①②⑤.(写出所有符合条件的序号)

查看答案和解析>>

科目: 来源: 题型:选择题

14.将函数f(x)=2sin(2x-$\frac{π}{3}$)+1的图象上各点的纵坐标不变,横坐标缩短为原来的$\frac{1}{2}$,所得图象的一个对称中心可能是(  )
A.($\frac{π}{3}$,0)B.($\frac{2π}{3}$,0)C.($\frac{π}{3}$,1)D.($\frac{2π}{3}$,1)

查看答案和解析>>

科目: 来源: 题型:选择题

13.已知m,n∈R,集合A={2,log7m},集合B={m,n},若A∩B={0},则m-n=(  )
A.1B.2C.4D.8

查看答案和解析>>

科目: 来源: 题型:解答题

12.高速公路为人民出行带来极大便利,但由于高速上车速快,一旦出事故往往导致生命或财产的重大损失,我国高速公路最高限速120km/h,最低限速60km/h.
(Ⅰ)当驾驶员以120 千米/小时速度驾车行驶,驾驶员发现前方有事故,以原车速行驶大约需要0.9秒后才能做出紧急刹车,做出紧急刹车后,车速依v(t)=$\frac{100}{3(t+1)}$-$\frac{5}{3}$t(t:秒,v(t):米/秒)规律变化直到完全停止,求驾驶员从发现前方事故到车辆完全停止时,车辆行驶的距离;(取ln5=1.6)
(Ⅱ)国庆期间,高速免小车通行费,某人从襄阳到曾都自驾游,只需承担油费.已知每小时油费v(元)与车速有关,w=$\frac{{v}^{2}}{250}$+40(v:km/h),高速路段必须按国家规定限速内行驶,假定高速上为匀速行驶,高速上共行驶了S千米,当高速上行驶的这S千米油费最少时,求速度v应为多少km/h?

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知向量$\overrightarrow{m}$=(cos$\frac{x}{2}$-1),$\overrightarrow{n}$=($\sqrt{3}$sin$\frac{x}{2}$,cos2$\frac{x}{2}$),函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$+1.
(Ⅰ)若x∈[$\frac{π}{2}$,π],求f(x)的最小值及对应的x的值;
(Ⅱ)若x∈[0,$\frac{π}{2}$],f(x)=$\frac{11}{10}$,求sinx的值.

查看答案和解析>>

科目: 来源: 题型:选择题

10.下列命题的叙述:
①若p:?x>0,x2-x+1>0,则¬p:?x0≤0,x02-x0+1≤0;
 ②三角形三边的比是3:5:7,则最大内角为$\frac{2}{3}$π;
③若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{b}$•$\overrightarrow{c}$,则$\overrightarrow{a}$=$\overrightarrow{c}$;
 ④ac2<bc2是a<b的充分不必要条件,
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数f(x)为对数函数,并且它的图象经过点(2$\sqrt{2}$,$\frac{3}{2}$),g(x)=[f(x)]2-2bf(x)+3,其中b∈R.
(1)求函数f(x)的解析式;
(2)求函数y=g(x)在区间[$\sqrt{2}$,16]上的最小值.

查看答案和解析>>

同步练习册答案