相关习题
 0  233629  233637  233643  233647  233653  233655  233659  233665  233667  233673  233679  233683  233685  233689  233695  233697  233703  233707  233709  233713  233715  233719  233721  233723  233724  233725  233727  233728  233729  233731  233733  233737  233739  233743  233745  233749  233755  233757  233763  233767  233769  233773  233779  233785  233787  233793  233797  233799  233805  233809  233815  233823  266669 

科目: 来源: 题型:解答题

14.已知函数f(x)=x2+4ax+2a+6.
(1)若函数f(x)=log2  f(x)的最小值为2,求a的值;
(2)若对任意x∈R,都有f(x)≥0成立,求函数g(a)=2-a|a+3|的值域.

查看答案和解析>>

科目: 来源: 题型:填空题

13.若函数f(x)=lg(ax-1)-lg(x-1)在区间[2,+∞)上是增函数,则a的取值范围是$\frac{1}{2}$<a<!.

查看答案和解析>>

科目: 来源: 题型:填空题

12.已知函数f(x)=b•ax(a>0,且a≠1,b∈R)的图象经过点A(1,6),B(3,24).
(1)设g(x)=$\frac{1}{f(x)+3}$-$\frac{1}{6}$,确定函数g(x)的奇偶性;
(2)若对任意x∈(-∞,1],不等式($\frac{a}{b}$)x≥2m+1恒成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

11.若函数f(x)=|2x-2|-m有两个不同的零点,则实数m的取值范围是(0,2).

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知数列{an}的前n项和为Sn,且Sn=$\frac{{n}^{2}}{2}$+$\frac{3n}{2}$.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=an+2-an+$\frac{1}{{a}_{n+1}-{a}_{n}}$,且数列{bn}的前n项和为Tn,求证:Tn<2n+$\frac{5}{12}$.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{2x-y-5≤0}\end{array}\right.$,求:
(Ⅰ)z=$\frac{y+2}{x+1}$的取值范围;
(Ⅱ)z=x2+y2-8x-2y+17的最小值.
(III)求z=|x-2y+1|的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知正项数列{an}满足:a1=$\frac{3}{2}$,an+1=$\frac{3{a}_{n}}{2{a}_{n}+3}$.
(1)证明{$\frac{1}{{a}_{n}}$}为等差数列,并求通项an
(2)若数列{bn}满足bn•an=3(1-$\frac{1}{{2}^{n}}$),求数列{bn}的前n项和.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知f(x)是定义在R上的奇函数,且x>0时,f(x)=-x2+x+1,求f(x)的解析式.

查看答案和解析>>

科目: 来源: 题型:解答题

6.国家为了鼓励节约用水,实行阶梯用水收费制度,价格参照表如表:
用水量(吨)单价(元/吨)
0~20(含)2.5
20~35(含)3超过20吨不超过35吨的部分按3元/吨收费
35以上4超过35吨的部分按4元/吨收费
(Ⅰ)若小明家10月份用水量为30吨,则应缴多少水费?
(Ⅱ)若小明家10月份缴水费99元,则小明家10月份用水多少吨?
(Ⅲ)写出水费y与用水量x之间的函数关系式,并画出函数的图象.

查看答案和解析>>

科目: 来源: 题型:填空题

5.考察下列命题,在“___”处缺少一个条件,补上这个条件使其构成正确命题(其中l,m为直线,α,β为平面),则此条件为1?α.
$\left.\begin{array}{l}{m?α}\\{l∥m}\\{_____}\end{array}\right\}$⇒l∥α

查看答案和解析>>

同步练习册答案