相关习题
 0  233690  233698  233704  233708  233714  233716  233720  233726  233728  233734  233740  233744  233746  233750  233756  233758  233764  233768  233770  233774  233776  233780  233782  233784  233785  233786  233788  233789  233790  233792  233794  233798  233800  233804  233806  233810  233816  233818  233824  233828  233830  233834  233840  233846  233848  233854  233858  233860  233866  233870  233876  233884  266669 

科目: 来源: 题型:选择题

16.若对任意a∈[3,5]关于x的方程x2-$\frac{m}{a-1}$x-6=0在区间[3,m]上都有实数解,则实数m的取值范围是(  )
A.{m|m≥4}B.{m|m≥2$\sqrt{3}$}C.{m|m≤2$\sqrt{3}$或m≥4}D.{m|4≤m≤2$\sqrt{3}$}

查看答案和解析>>

科目: 来源: 题型:解答题

15.设数列{an}的前n项和为Sn.已知a1=1,$\frac{{2{S_n}}}{n}$=an+1-$\frac{1}{3}$n2-n-$\frac{2}{3}$,n∈N*
(1)求数列{an}的通项公式;
(2)设数列{bn}满足an-an-1=bna${\;}_{2^n}}$,求数列{bn}的n前项和Tn
(3)是否存在实数λ,使得不等式λa${\;}_{{{({\sqrt{2}})}^n}}}$-$\frac{λ}{{{a_{{{({\sqrt{2}})}^n}}}}}$+a${\;}_{2^n}}$+$\frac{1}{{{a_{2^n}}}}$≥0恒成立,若存在,求出λ的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知△ABC中,顶点A(2,1),B(-1,-1),∠C的平分线所在直线的方程是x+2y-1=0.
(1)求点C的坐标;
(2)求点A到直线BC的距离.

查看答案和解析>>

科目: 来源: 题型:选择题

13.已知函数f(x)=x3-3x2-k有三个不同的零点,则实数k的取值范围是(  )
A.(-4,0)B.[-4,0)C.(-∞,-4)D.(0,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知f(x)=$\left\{\begin{array}{l}ln(x+1),x>0\\-{x^2}+2x,x≤0\end{array}$,则不等式f(2x-1)>f(2-x)的解集为(  )
A.(-∞,0)B.(-1,2)C.(1,2)D.(1,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

11.已知函数f(x)=$\frac{lnx}{x}$,又α,β为锐角三角形的两内角,则(  )
A.f(sinα)>f(cosβ)B.f(sinα)>f(sinβ)C.f(sinα)<f(cosβ)D.f(cosα)>f(cosβ)

查看答案和解析>>

科目: 来源: 题型:填空题

10.定义在R上的函数f(x)满足下列三个条件:
(1)f(x-2)+f(-x)=0; 
(2)f(2-x)=f(x); 
(3)在(-1,1]上的表达式为f(x)=$\left\{\begin{array}{l}sin(\frac{π}{2}x)x∈(0,1]\\|lg(x+1)|x∈(-1,0]\end{array}$.
已知函数g(x)=$\left\{\begin{array}{l}{{2}^{-x},x∈[0,+∞)}\\{x+1,x∈(-∞,0)}\end{array}$,则方程f(x)=g(x)在区间[-5,3]内共有3个解.

查看答案和解析>>

科目: 来源: 题型:填空题

9.设M是圆(x-5)2+(y-3)2=9上的点,直线l:3x+4y-2=0,则点M到直线l距离的最大值为8.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,在三棱锥P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.
(1)证明:AB∥GH;
(2)求平面ABQ与平面EFQ所成二面角的正弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知函数f(x)=$\frac{1}{2}$x2+$\frac{b}{x}$+c(b,c是常数)和g(x)=$\frac{1}{4}$x+$\frac{1}{x}$都是定义在M={x|1≤x≤4}上的函数,对于任意的x∈M,存在x0∈M,使得f(x)≥f(x0)且g(x)≥g(x0)且f(x0)=g(x0),求f(x)在集合M上的最大值.

查看答案和解析>>

同步练习册答案