相关习题
 0  233700  233708  233714  233718  233724  233726  233730  233736  233738  233744  233750  233754  233756  233760  233766  233768  233774  233778  233780  233784  233786  233790  233792  233794  233795  233796  233798  233799  233800  233802  233804  233808  233810  233814  233816  233820  233826  233828  233834  233838  233840  233844  233850  233856  233858  233864  233868  233870  233876  233880  233886  233894  266669 

科目: 来源: 题型:选择题

16.已知复数z满足(5+12i)z=169,则$\overline{z}$=(  )
A.-5-12iB.-5+12iC.5-12iD.5+12i

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知集合M={x|$\frac{x-3}{x+1}$≤0},N={-3,-1,1,3,5},则M∩N=(  )
A.{1,3}B.{-1,1,3}C.{-3,1}D.{-3,-1,1}

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知直线l1:$\left\{\begin{array}{l}x=t\\ y=\sqrt{3}t\end{array}$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立直角坐标系,圆C1:ρ2-2$\sqrt{3}$ρcosθ-4ρsinθ+6=0.
(1)求圆C1的直角坐标方程,直线l1的极坐标方程;
(2)设l1与C1的交点为M,N,求△C1MN的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知数列{an}的首项a1=2,且满足an+1=2an+3•2n+1,(n∈N*).
(1)设bn=$\frac{a_n}{2^n}$,证明数列{bn}是等差数列;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目: 来源: 题型:解答题

12.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinA-sinC(cosB+$\frac{\sqrt{3}}{3}$sinB)=0.
(1)求角C的大小;    
(2)若c=2,且△ABC的面积为$\sqrt{3}$,求a,b的值.

查看答案和解析>>

科目: 来源: 题型:解答题

11.函数f(x)=sin2x+$\sqrt{3}$sinxcosx.
(1)求函数f(x)的递增区间;
(2)当x∈[0,$\frac{π}{2}$]时,求f(x)的值域.

查看答案和解析>>

科目: 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}-{x^2}+1,x<1\\{log_2}x,x≥1\end{array}$,若关于x的方程f(x)=k有三个不同的实根,则实数k的取值范围是(0,1).

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知函数f(x)=xex-mx+m,若f(x)<0的解集为(a,b),其中b<0;不等式在(a,b)中有且只有一个整数解,则实数m的取值范围是(  )
A.$(\frac{2}{{3{e^2}}},\frac{1}{2e})$B.$(\frac{2}{{3{e^2}}},\frac{1}{e})$C.$[\frac{2}{{3{e^2}}},\frac{1}{2e})$D.$[\frac{2}{{3{e^2}}},\frac{1}{e})$

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知函数f(x)=3cos(2x-$\frac{π}{3}$),则下列结论正确的是(  )
A.导函数为$f'(x)=-3sin(2x-\frac{π}{3})$
B.函数f(x)的图象关于直线$x=\frac{2π}{3}$对称
C.函数f(x)在区间(-$\frac{π}{12}$,$\frac{5π}{12}$)上是增函数
D.函数f(x)的图象可由函数y=3co s2x的图象向右平移$\frac{π}{3}$个单位长度得到

查看答案和解析>>

科目: 来源: 题型:选择题

7.已知f(x)为偶函数,且f(x+2)=-f(x),当-2≤x≤0时,f(x)=2x;若n∈N*,an=f(n),则a2017等于(  )
A.2017B.-8C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案