相关习题
 0  233722  233730  233736  233740  233746  233748  233752  233758  233760  233766  233772  233776  233778  233782  233788  233790  233796  233800  233802  233806  233808  233812  233814  233816  233817  233818  233820  233821  233822  233824  233826  233830  233832  233836  233838  233842  233848  233850  233856  233860  233862  233866  233872  233878  233880  233886  233890  233892  233898  233902  233908  233916  266669 

科目: 来源: 题型:解答题

3.已知函数f(x)=2sinxcosx+2cos2x-1.
(1)求f(x)的最大值及取得最大值时x的集合;
(2)若锐角三角形ABC的三个内角A,B,C的对边分别为a,b,c,且$f(\frac{A}{2})=\sqrt{2},a=2$,$b=\sqrt{6}$,求△ABC的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

2.在△ABC中,已知A(3,1),B(1,0),C(2,3),
(1)判断△ABC的形状;
(2)设O为坐标原点,$\overrightarrow{OD}$=m$\overrightarrow{OC}$(m∈R),且($\overrightarrow{AB}$-m$\overrightarrow{OC}$)∥$\overrightarrow{BC}$,求|$\overrightarrow{OD}$|.

查看答案和解析>>

科目: 来源: 题型:填空题

1.已知向量$\overrightarrow a=(-1,x)$,$\overrightarrow b=(2,y)$且$\overrightarrow a⊥\overrightarrow b$,则|$\overrightarrow a+\overrightarrow b|$的最小值为4.

查看答案和解析>>

科目: 来源: 题型:选择题

20.“a=2”是“函数f(x)=|x-a|在[3,+∞)上是增函数”的(  )
A.必要非充分条件B.充分非必要条件
C.充要条件D.非充分非必要条件

查看答案和解析>>

科目: 来源: 题型:选择题

19.设函数f(x)=sin2x+$\sqrt{3}$cos2x,则下列结论正确的是(  )
A.f(x)的图象关于点$(\frac{2π}{3},0)$中心对称
B.f(x)在$[0,\frac{π}{6}]$上单调递增
C.把f(x)的图象向左平移$\frac{π}{12}$个单位后关于y轴对称
D.f(x)的最小正周期为4π

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知函数f(x)为偶函数,且当x≤0时,f(x)=ex-$\frac{1}{x-1}$,若f(-a)+f(a)≤2f(1),则实数a取值范围是(  )
A.(-∞,-1]∪[1,+∞)B.[-1,0]C.[0,1]D.[-1,1]

查看答案和解析>>

科目: 来源: 题型:解答题

17.己知函数f(x)=(2a+2)lnx+2ax2+5,g(x)=$\frac{1}{2}$lnx-$\frac{1}{2{e}^{2}}$x
(1)讨论函数f(x)的单调性;
(2)若a>0时,对?x1,x2∈[2,2e2]都有10+g(x1)≤f(x2)成立,试求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知直线l:y=x+2与圆x2+y2=6相交的弦长为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴长,且椭圆的离心率为$\frac{1}{2}$,若抛物线C:y2=2px的焦点与椭圆的焦点重合.
(1)求该椭圆的方程和抛物线的方程
(2).若过抛物线C的焦点且与直线l平行的直线交抛物线于M,N两点,点P为直线l上的动点,试求$\overrightarrow{PM}$$•\overrightarrow{PN}$的最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

15.已知函数f(x)=lnx+$\frac{1}{x}$+ax,x∈(0,+∞)(a为常数),若函数f(x)在[2,+∞)为单调函数,则a的取值范围为(-∞,-$\frac{1}{4}$]∪[0,+∞).

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知函数f(x)=$\frac{1}{2}$ax2+lnx,a∈R.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若函数f(x)有两个零点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案