相关习题
 0  233828  233836  233842  233846  233852  233854  233858  233864  233866  233872  233878  233882  233884  233888  233894  233896  233902  233906  233908  233912  233914  233918  233920  233922  233923  233924  233926  233927  233928  233930  233932  233936  233938  233942  233944  233948  233954  233956  233962  233966  233968  233972  233978  233984  233986  233992  233996  233998  234004  234008  234014  234022  266669 

科目: 来源: 题型:填空题

5.已知圆O:x2+y2=4,直线l与圆O相交于点P、Q,且$\overrightarrow{OP}•\overrightarrow{OQ}=-2$,则弦PQ的长度为$2\sqrt{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

4.在平面直角坐标系xOy中,椭圆W:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2.O为坐标原点,椭圆过点M(0,1),离心率为$\frac{{\sqrt{3}}}{2}$,直线y=kx+m(m≠0)与椭圆交于A,C两点,B为椭圆上一点.
(1)求椭圆标准方程.
(2)用反证法证明:当点B不是W的顶点时,四边形OABC是不可能为菱形.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知函数f(x)=xlnx.
(1)过点A(-e-2,0)作函数y=f(x)图象的切线,求切线方程.
(2)若f(x)≥-x2+ax-6在(0,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知z0=2+2i,|z-z0|=$\sqrt{2}$,
(1)求复数z在复平面内对应的点的轨迹方程,并说明它是什么曲线.
(2)求z为何值时,|z|有最大、最小值,并求出|z|有最小值和最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知角α的顶点与原点重合,始边与x轴非负半轴重合,而终边经过点P(1,2).
(1)求tanα的值;
(2)求$\frac{\sqrt{2}sinα-2cosα}{5cosα+3sinα}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知圆C的圆心在直线2x-y-7=0上,且与y轴交于A(0,-4),B(0,-2)两点
(1)求圆C的标准方程;
(2)过点P(-1,-4)作圆C的切线,切点分别为点A,B,求切线的方程及切线长.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知直线l1:2x+y+2=0和l2:3x+y+1=0,设直线l1和l2的交点为P
(1)求过点P且与直线l3:2x+3y+5=0垂直的直线方程;
(2)直线l过点P且在两坐标轴上的截距之和为-6,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:填空题

18.如图,在△ABC中,∠ACB=90°,AC=2,BC=1,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点O的最大距离是1+$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

17.函数f(x)=Asin(ωx-$\frac{π}{6}$)+1(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为$\frac{π}{2}$.
(1)求函数f(x)的解析式;
(2)求函数y=f(x)的单调增区间;
(3)设α∈(0,$\frac{π}{2}$),则f($\frac{α}{2}$)=2,求α的值.

查看答案和解析>>

科目: 来源: 题型:填空题

16.设i是虚数单位,若复数z满足z(1+i)=(1-i),则复数z的模|z|=1.

查看答案和解析>>

同步练习册答案