相关习题
 0  233829  233837  233843  233847  233853  233855  233859  233865  233867  233873  233879  233883  233885  233889  233895  233897  233903  233907  233909  233913  233915  233919  233921  233923  233924  233925  233927  233928  233929  233931  233933  233937  233939  233943  233945  233949  233955  233957  233963  233967  233969  233973  233979  233985  233987  233993  233997  233999  234005  234009  234015  234023  266669 

科目: 来源: 题型:解答题

15.设函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,其中向量$\overrightarrow{m}$=(2cosx,1),$\overrightarrow{n}$=(cosx,$\sqrt{3}$sin2x).
(1)求函数f(x)的最小正周期与单调递增区间;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,已知f(A)=2,b=1,若△ABC外接圆半径R=1,求△ABC的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知等比数列{an}满足a1=2,a4=4(a3-a2),数列{bn}满足bn=-1+2log2an
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)令cn=an•bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:选择题

13.函数f(x)=$\sqrt{x\sqrt{x\sqrt{x}}}$的导数是(  )
A.$\frac{1}{{\root{8}{x}}}$(x>0)B.$\frac{7}{{8\root{8}{x}}}$(x>0)C.$\frac{1}{{8\root{8}{x^7}}}$(x>0)D.$\frac{-1}{{8\root{8}{x}}}$(x>0)

查看答案和解析>>

科目: 来源: 题型:选择题

12.设f(x)=ex,0<a<b,若p=f($\sqrt{ab}$),q=f($\frac{a+b}{2}$),$r=\sqrt{f(a)f(b)}$,则下列关系式中正确的是(  )
A.q=r>pB.q=r<pC.p=r>qD.p=r<q

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知数列{an}满足a1=2,a2=6,且对?n∈N+,都有an+2=2an+1-an+2.
(Ⅰ)设bn=an+1-an,证明数列{bn}为等差数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)求数列{$\frac{{a}_{n}}{n}$•3n}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知圆C的圆心为(1,2)且与直线2x+y+1=0相切.
(Ⅰ)求圆C的标准方程;
(Ⅱ)若直线l经过点(-1,-1)且被圆C截得的弦长为2,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知P:?x∈(0,+∞),$x+\frac{1}{x}>a$,$q:a<\sqrt{3}$,则P是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目: 来源: 题型:填空题

8.下列四个命题:
(1)函数$y=sin(2x+\frac{π}{3})在区间(-\frac{π}{3},\frac{π}{6})$内单调递增.
(2)函数$y=cos(x+\frac{π}{3})$的图象关于点$(\frac{π}{6},0)$对称.
(3)函数$y=tan(x+\frac{π}{3})$的图象关于直线$x=\frac{π}{6}$成轴对称.
(4)把函数y=3sin(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{6}$得到函数y=3sin2x的图象.
其中真命题的序号是(2)(4).

查看答案和解析>>

科目: 来源: 题型:选择题

7.在三角形ABC中,已知sinC=2sin(B+C)cosB,那么三角形ABC一定是(  )三角形.
A.等腰直角B.等腰C.直角D.等边

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知空间四边形ABCD,连接AC,BD,设M,G分别是BC,CD的中点,化简下列各表达式:
(1)$\overrightarrow{AB}+\frac{1}{2}(\overrightarrow{BD}+\overrightarrow{BC})$
(2)$\overrightarrow{AD}-\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$.

查看答案和解析>>

同步练习册答案