相关习题
 0  233859  233867  233873  233877  233883  233885  233889  233895  233897  233903  233909  233913  233915  233919  233925  233927  233933  233937  233939  233943  233945  233949  233951  233953  233954  233955  233957  233958  233959  233961  233963  233967  233969  233973  233975  233979  233985  233987  233993  233997  233999  234003  234009  234015  234017  234023  234027  234029  234035  234039  234045  234053  266669 

科目: 来源: 题型:填空题

2.设F1、F2分别为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,若双曲线的右支上存在一点P,使$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,且△F1PF2的三边长构成等差数列,则此双曲线的渐近线方程为y=±2$\sqrt{6}$x.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知等差数列{an}的前n项和为Sn,已知a2=3,S9=81.
(Ⅰ)求通项an
(Ⅱ)记数列{$\frac{{S}_{n}}{n}$}的前n项和为Tn,数列{$\frac{1}{{T}_{n}}$}的前n项和为Un,求证:Un<2.

查看答案和解析>>

科目: 来源: 题型:选择题

20.设集合A={x|x2-5x-6=0},B={x|y=log2(2-x)},则A∩(∁RB)=(  )
A.{2,3}B.{-1,6}C.{3}D.{6}

查看答案和解析>>

科目: 来源: 题型:选择题

19.在△ABC中,$\overrightarrow{MB}$=$\frac{1}{4}$$\overrightarrow{AB}$,且对AB边上任意一点N,恒有$\overrightarrow{NB}$•$\overrightarrow{NC}$≥$\overrightarrow{MB}$•$\overrightarrow{MC}$,则有(  )
A.AB⊥BCB.AB⊥ACC.AB=ACD.AC=BC

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,(a>b>0)$的两焦点F1,F2,过F2作垂直于x轴的直线与椭圆相交,交点分别是P1,P2,△F1P1P2为正三角形,椭圆的离心率为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{4}$D.$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

17.若(x2+ax+1)6(a>0)的展开式中x2的系数是66,则实数a的值为(  )
A.4B.3C.2D.l

查看答案和解析>>

科目: 来源: 题型:解答题

16.八个人排成一排.其中甲、乙、丙3人中有两人相邻.但这三人不同时相邻的排法有多少种?

查看答案和解析>>

科目: 来源: 题型:解答题

15.(1)化简$\frac{\sqrt{1-2sin10°cos10°}}{sin170°-\sqrt{1-si{n}^{2}170°}}$;
(2)已知tanθ=2,求2+sinθcosθ-cos2θ的值.

查看答案和解析>>

科目: 来源: 题型:选择题

14.在△ABC中,已知($\overrightarrow{AB}$+$\overrightarrow{AC}$)•$\overrightarrow{BC}$=0,$\overrightarrow{OA}$2+$\overrightarrow{OB}$•$\overrightarrow{OC}$=$\overrightarrow{OA}$•$\overrightarrow{OB}$+$\overrightarrow{OA}$•$\overrightarrow{OC}$(O为平面内任意一点),则△ABC的形状为(  )
A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目: 来源: 题型:解答题

13.在平面直角坐标系x0y中,已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)经过(0,1),且离心率e=$\frac{{\sqrt{2}}}{2}$,
(1)求椭圆方程.
(2)经过点(0,$\sqrt{2})$且斜率k的直线l与椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>0,b>0)有两个不同的交点P和Q.
①求k的取值范围.
②设椭圆与x轴正半轴、y轴正半轴的交点分别为A、B,是否存在常数k,使向量$\overrightarrow{OP}$+$\overrightarrow{OQ}$与$\overrightarrow{AB}$共线?如果存在,求k值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案