相关习题
 0  233967  233975  233981  233985  233991  233993  233997  234003  234005  234011  234017  234021  234023  234027  234033  234035  234041  234045  234047  234051  234053  234057  234059  234061  234062  234063  234065  234066  234067  234069  234071  234075  234077  234081  234083  234087  234093  234095  234101  234105  234107  234111  234117  234123  234125  234131  234135  234137  234143  234147  234153  234161  266669 

科目: 来源: 题型:选择题

12.若函数y=f(x)为奇函数,则它的图象必经过点(  )
A.(-a,-f(a))B.(0,0)C.(a,f(-a))D.(-a,-f(-a))

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦点与抛物线y2=4$\sqrt{3}$x的焦点重合,且该椭圆的离心率与双曲线$\frac{x^2}{3}-{y^2}$=1的离心率互为倒数.
(Ⅰ)求椭圆的方程;
(II)设直线l与椭圆相交于不同的两点A,B,已知点A的坐标为(-a,0),点Q(0,y0)在线段AB的垂直平分线上,且$\overrightarrow{QA}$•$\overrightarrow{QB}$=4,求y0的值.

查看答案和解析>>

科目: 来源: 题型:选择题

10.已知下列选项,其中错误的是(  )
①过圆(x-1)2+(y-2)2=4外一点M(3,1),且与圆相切的直线方程为3x-4y-5=0;
②方程Ax2+By2=1(A>0,B>0)表示椭圆方程;
③平面内到点F1(0,4),F2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线;
④方程$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{n}$=1(mn>0)表示焦点在x轴上的双曲线.
A.①②③④B.①②③C.③④D.②④

查看答案和解析>>

科目: 来源: 题型:选择题

9.如果椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1的弦被点(1,1)平分,则这条弦所在的直线方程是(  )
A.x+2y-3=0B.2x-y-3=0C.2x+y-3=0D.x+2y+3=0

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点分别为F1、F2,离心率$e=\frac{{\sqrt{2}}}{2}$,P为椭圆E上的任意一点(不含长轴端点),且△PF1F2面积的最大值为1.
(Ⅰ)求椭圆E的方程;
(Ⅱ)已知直x-y+m=0与椭圆E交于不同的两点A,B,且线AB的中点不在圆${x^2}+{y^2}=\frac{5}{9}$内,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知抛物线C:y2=2px(p>0),上的点M(1,m)到其焦点F的距离为2,
(Ⅰ)求C的方程;并求其准线方程;
(II)已知A (1,-2),是否存在平行于OA(O为坐标原点)的直线L,使得直线L与抛物线C有公共点,且直线OA与L的距离等于$\frac{\sqrt{5}}{5}$?若存在,求直线L的方程;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知圆心在直线y=4x上,且与直线l:x+y-2=0相切于点P(1,1).
(Ⅰ)求圆的方程;
(II)直线kx-y+3=0与该圆相交于A、B两点,若点M在圆上,且有向量$\overrightarrow{OM}=\overrightarrow{OA}+\overrightarrow{OB}$(O为坐标原点),求实数k.

查看答案和解析>>

科目: 来源: 题型:解答题

5.某研究所计划利用“神十”宇宙飞船进行新产品搭载实验,计划搭载若干件新产品A、B,该所要根据该产品的研制成本、产品重量、搭载实验费用和预计产生的收益来决定具体搭载安排,有关数据如下表:
每件产品A每件产品B
研制成本、搭载
费用之和(万元)
2030计划最大资金额
300万元
产品重量(千克)105最大搭载重量110千克
预计收益(万元)8060
分别用x,y表示搭载新产品A,B的件数.总收益用Z表示
(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(Ⅱ)问分别搭载新产品A、B各多少件,才能使总预计收益达到最大?并求出此最大收益.

查看答案和解析>>

科目: 来源: 题型:选择题

4.已知圆C的方程(x-1)2+y2=1,P是椭圆$\frac{x^2}{4}+\frac{y^2}{3}$=1上一点,过P作圆的两条切线,切点为A、B,则$\overrightarrow{PA}•\overrightarrow{PB}$的取值范围为(  )
A.$[2\sqrt{2}-3,\frac{56}{9}]$B.$[\frac{56}{9},+∞)$C.$(-∞,2\sqrt{2}-3]$D.$(-∞,2\sqrt{2}-3]∪[\frac{56}{9},+∞)$

查看答案和解析>>

科目: 来源: 题型:选择题

3.以下四个关于圆锥曲线的命题中:
①双曲线$\frac{x^2}{16}-\frac{y^2}{9}=1$与椭圆$\frac{x^2}{49}+\frac{y^2}{24}=1$有相同的焦点;
②以抛物线的焦点弦(过焦点的直线截抛物线所得的线段)为直径的圆与抛物线的准线是相切的;
③设A、B为两个定点,k为常数,若|PA|-|PB|=k,则动点P的轨迹为双曲线;
④过定圆C上一点A作圆的动弦AB,O为原点,若$\overrightarrow{OP}=\frac{1}{2}(\overrightarrow{OA}+\overrightarrow{OB})$则动点P的轨迹为椭圆.其中正确的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案