相关习题
 0  234014  234022  234028  234032  234038  234040  234044  234050  234052  234058  234064  234068  234070  234074  234080  234082  234088  234092  234094  234098  234100  234104  234106  234108  234109  234110  234112  234113  234114  234116  234118  234122  234124  234128  234130  234134  234140  234142  234148  234152  234154  234158  234164  234170  234172  234178  234182  234184  234190  234194  234200  234208  266669 

科目: 来源: 题型:选择题

2.若椭圆的方程为4x2+9y2-36=0,则其长轴长为(  )
A.3B.4C.6D.9

查看答案和解析>>

科目: 来源: 题型:解答题

1.如果函数y=f(x)的定义域为R,对于定义域内的任意x,存在实数a使得f=f(x+a)=f(-x)成立,则称此函数具有“P(a)性质”;
(1)判断函数y=sinx是否具有“P(a)性质”,若具有“P(a)性质”,试写出所有a的值;若不具有“P(a)性质”,请说明理由;
(2)已知y=f(x)具有“P(0)性质”,当x≤0时,f(x)=(x+t)2,t∈R,求y=f(x)在[0,1]上的最大值;
(3)设函数y=g(x)具有“P(±1)性质”,且当-$\frac{1}{2}$≤x≤$\frac{1}{2}$时,g(x)=|x|,求:当x∈R时,函数g(x)的解析式,若y=g(x)与y=mx(m∈R)交点个数为1001个,求m的值.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知函数f(x)=$\frac{{x}^{2}-4x+3+a}{x-1}$,其中a为常数;
(1)当a=2时,解不等式f(x)≥1;
(2)当a<0时,求函数f(x)在x∈(1,3]上的值域.

查看答案和解析>>

科目: 来源: 题型:选择题

19.如图,点列{An}、{Bn}分别在锐角两边(不在锐角顶点),且|AnAn+1|=|An+1An+2|,An≠An+2,|BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1,n∈N*(P≠Q表示点P与Q不重合),若dn=|AnBn|,Sn为△AnBnBn+1的面积,则(  )
A.{dn}是等差数列B.{Sn}是等差数列
C.{d${\;}_{n}^{2}$}是等差数列D.{S${\;}_{n}^{2}$}是等差数列

查看答案和解析>>

科目: 来源: 题型:选择题

18.若a>0,b>0,a+b=2,则下列不等式不恒成立的是(  )
A.ab≤1B.a2+b2≥2C.$\sqrt{a}$+$\sqrt{b}$≤$\sqrt{2}$D.$\frac{1}{a}$+$\frac{1}{b}$≥2

查看答案和解析>>

科目: 来源: 题型:选择题

17.“a=3”是“函数f(x)=x2-2ax+2在区间[3,+∞)内单调递增”的(  )条件.
A.充分非必要B.必要非充分
C.充要D.既非充分也非必要

查看答案和解析>>

科目: 来源: 题型:填空题

16.已知函数f(x)=x2-1(-1≤x<0),则f-1(x)=-$\sqrt{x+1}$,x∈(-1,0].

查看答案和解析>>

科目: 来源: 题型:填空题

15.设集合A={x||x-2|≥1},集合B={x|$\frac{1}{x}$<1},则A∩B=(-∞,0)∪[3,+∞).

查看答案和解析>>

科目: 来源: 题型:填空题

14.已知cosα=-$\frac{1}{3}$,且α∈(-π,0),则α=arccos$\frac{1}{3}$-π(用反三角函数表示).

查看答案和解析>>

科目: 来源: 题型:填空题

13.函数y=tan(2x-$\frac{π}{3}$)的单调区间为(-$\frac{π}{12}$+$\frac{kπ}{2}$,$\frac{5π}{12}$+$\frac{kπ}{2}$),(k∈Z).

查看答案和解析>>

同步练习册答案