相关习题
 0  234061  234069  234075  234079  234085  234087  234091  234097  234099  234105  234111  234115  234117  234121  234127  234129  234135  234139  234141  234145  234147  234151  234153  234155  234156  234157  234159  234160  234161  234163  234165  234169  234171  234175  234177  234181  234187  234189  234195  234199  234201  234205  234211  234217  234219  234225  234229  234231  234237  234241  234247  234255  266669 

科目: 来源: 题型:填空题

5.下列说法正确的是①③④⑤⑥(填上你认为正确的所有命题的序号)
①函数y=-sin(kπ+x)(k∈Z)是奇函数;
②函数y=2sin(2x+$\frac{π}{3}$)的图象关于点($\frac{π}{12}$,0)对称;
③函数y=2sin(2x+$\frac{π}{3}$)+sin(2x-$\frac{π}{3}$)的最小正周期是π;
④△ABC中,cosA>cosB充要条件是A<B; 
⑤函数y=cos2x+sinx的最小值是-1.
⑥y=|sin(2x+$\frac{π}{6}$)+1|最小正周期为$\frac{π}{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

4.已知实数x,y满足$\left\{{\begin{array}{l}{x-2y≤0}\\{x+y-5≤0}\\{3x+y-7≥0}\end{array}}\right.$,若u=$\frac{y}{x}$,则u+$\frac{1}{u}$的最大值是$\frac{17}{4}$.

查看答案和解析>>

科目: 来源: 题型:选择题

3.定义在R上的函数f(x)满足f(4)=1,f′(x)为f(x)的导函数,已知y=f′(x)的图象如图所示,若两个正数a、b满足f(2a+b)>1,则$\frac{b+1}{a+1}$的取值范围是(  )
A.($\frac{1}{5}$,$\frac{1}{3}$)B.(-∞,3)C.(-∞,$\frac{1}{3}$)D.($\frac{1}{3}$,5)

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知全集U=R,集合A={x|x2>4},B={x|-3<x<1},则(∁UA)∩B等于(  )
A.{x|-2≤x<1}B.{x|-3<x<2}C.{x|-2<x<2}D.{x|-3≤x≤2}

查看答案和解析>>

科目: 来源: 题型:填空题

1.已知函数f(x)=ex(x2+ax-2)在区间(-2,-1)内单调递减,则实数a的取值范围(-2,+∞).

查看答案和解析>>

科目: 来源: 题型:解答题

10.当a为何值时,函数y=7x2-(a+13)x+a2-a-2的一个零点在区间(0,1)上,另一个零点在区间(1,2)上?

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知定义在区间(0,+∞)上的函数f(x)=|t(x+$\frac{4}{x}$)-5|,其中常数t>0.
(Ⅰ)若函数f(x)分别在区间(0,2),(2,+∞)上单调,试求实数t的取值范围;
(Ⅱ)当t=1时,方程f(x)=m有四个不相等的实根x1,x2,x3,x4
①求四根之积x1x2x3x4的值;
②在[1,4]上是否存在实数a,b(a<b),使得f(x)在[a,b]上单调且取值范围为[ma,mb]?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知f(x)=max{x2-ax+a,ax-a+1},其中max{x,y}=$\left\{\begin{array}{l}{y,x≤y}\\{x,x>y}\end{array}\right.$.
(Ⅰ)若对任意x∈R,恒有f(x)=x2-ax+a,求实数a的值;
(Ⅱ)若a>1,求f(x)的最小值m(a).

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知函数f(x)=log${\;}_{\frac{1}{2}}$(x2-ax+b).
(Ⅰ) 若函数f(x)的定义域为(-∞,2)∪(3,+∞),求实数a,b的值;
(Ⅱ)  若f(-2)=-3且f(x)在(-∞,-1]上为增函数,求实数b的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知二次函数f(x)=x2+bx+c,当x∈R时f(x)=f(2-x)恒成立,且3是f(x)的一个零点.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)设g(x)=f(ax)(a>1),若函数g(x)在区间[-1,1]上的最大值等于5,求实数a的值.

查看答案和解析>>

同步练习册答案