相关习题
 0  234171  234179  234185  234189  234195  234197  234201  234207  234209  234215  234221  234225  234227  234231  234237  234239  234245  234249  234251  234255  234257  234261  234263  234265  234266  234267  234269  234270  234271  234273  234275  234279  234281  234285  234287  234291  234297  234299  234305  234309  234311  234315  234321  234327  234329  234335  234339  234341  234347  234351  234357  234365  266669 

科目: 来源: 题型:解答题

9.已知点H在圆D:(x-2)2+(y+3)2=32上运动,点P坐标为(-6,3),线段PH中点为M.
(1)求点M的轨迹方程;
(2)若直线y=kx与M的轨迹交于B、C两点,点N(0,t)使NB⊥NC,求实数t的范围.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,已知平面ABB1N⊥平面BB1C1C,四边形BB1C1C,是矩形,ABB1N是梯形,且AN⊥AB,AN∥BB1,AB=BC=AN=4,BB1=8.
(1)求证:BN⊥平面C1B1N;
(2)若M为AB中点,P是BC边上一点,且满足$\frac{BP}{PC}$=$\frac{1}{3}$,求证:MP∥平面CNB1
(3)求多面体ABB1NCC1的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知关于x的二次函数f(x)=ax2-4bx+1.
(1)设集合P={1,2,3}和Q={-1,0,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;
(2)设点(a,b)是区域$\left\{\begin{array}{l}{x+y-8≤0}\\{x>0}\\{y>0}\end{array}\right.$内的一点,求函数y=f(x)在区间[1,+∞)上是增函数的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知点H在圆D:(x-2)2+(y+3)2=32上运动,点P的坐标为(-6,3),线段PH的中点为M.
(1)求点M的轨迹方程;
(2)平面内是否存在定点A(a,b)(a≠0),使|MO|=λ|MA|(λ≠1常数),若存在,求出A的坐标及λ的值;若不存在,说明理由;
(3)若直线y=kx与M的轨迹交于B、C两点,点N(0,t)使NB⊥NC,求实数t的范围.

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知圆O的方程为x2+y2=4,P为圆O上的一个动点,若OP的垂直平分线总是被平面区域x2+y2≥a2覆盖,则实数a的取值范围是(  )
A.[-1,1]B.[0,1]C.[-2,2]D.[0,2]

查看答案和解析>>

科目: 来源: 题型:填空题

4.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0](x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0,且f(2)=0,则不等式$\frac{2f(x)+f(-x)}{5x}$<0的解集是(-∞,-2)∪(0,2).

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知函数f(x)=$\frac{ax+b}{{x}^{2}+1}$是定义在(-1,1)上的奇函数,且f($\frac{1}{2}$)=$\frac{2}{5}$.
(1)求函数f(x)的解析式;
(2)判断函数f(x)的单调性,并证明;
(3)解关于x的不等式f(2x-1)+f(x)<0.

查看答案和解析>>

科目: 来源: 题型:选择题

2.设f(x)是连续的偶函数,且当x>0时是单调函数,则满足f(x)=f($\frac{x+1}{2x+4}$)的所有x之和为(  )
A.-$\frac{3}{2}$B.-$\frac{5}{2}$C.-4D.4

查看答案和解析>>

科目: 来源: 题型:解答题

1.在平面直角坐标系xOy中,已知圆O的方程为x2+y2=2
(1)若直线l与圆O切于第一象限,且与坐标轴交于点D,E,当DE长最小时,求直线l的方程;
(2)设M,P是圆O上任意两点,点M关于x轴的对称点N,若直线MP,NP分别交x轴于点(m,0)(n,0),问mn是否为定值?若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知圆C:x2+y2=2,点P(2,0),M(0,2),设Q为圆C上一个动点.
(1)求△QPM面积的最大值,并求出最大值时对应点Q的坐标;
(2)在(1)的结论下,过点Q作两条相异直线分别与圆C相交于A,B两点,若直线QA、QB的倾斜角互补,问直线AB与直线PM是否垂直?请说明理由.

查看答案和解析>>

同步练习册答案