相关习题
 0  234184  234192  234198  234202  234208  234210  234214  234220  234222  234228  234234  234238  234240  234244  234250  234252  234258  234262  234264  234268  234270  234274  234276  234278  234279  234280  234282  234283  234284  234286  234288  234292  234294  234298  234300  234304  234310  234312  234318  234322  234324  234328  234334  234340  234342  234348  234352  234354  234360  234364  234370  234378  266669 

科目: 来源: 题型:解答题

19.设全集U=R,A={x|1≤x≤3},B={x|2a<x<a+3}
(Ⅰ)当a=1时,求(CUA)∩B;
(Ⅱ)若(CUA)∩B=B,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

18.已知函数f(x)的反函数是y=$\frac{1}{{3}^{x}}$,则函数f(2x-x2)的减区间为(0,1].

查看答案和解析>>

科目: 来源: 题型:填空题

17.已知2a=3,3b=7,则log756=1+$\frac{3}{ab}$.(结果用a,b表示)

查看答案和解析>>

科目: 来源: 题型:选择题

16.某化工厂生产一种溶液,按市场要求,杂质含量不得超过0.1%.若初始含杂质1%,每过滤一次可使杂质含量减少$\frac{1}{3}$.为了达到市场要求,至少过滤的次数为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知定义在R上的函数f(x)在(-∞,2)内为减函数,且f(x+2)为偶函数,则 f(-1),f(4),f($\frac{11}{2}$)的大小为(  )
A.f(4)<f(-1)<f($\frac{11}{2}$)B.f(-1)<f(4)<f($\frac{11}{2}$)C.f($\frac{11}{2}$)<f(4)<f(-1)D.f(-1)<f($\frac{11}{2}$)<f(4)

查看答案和解析>>

科目: 来源: 题型:选择题

14.设函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-3,x≤0}\\{{x}^{2},x>0}\end{array}$已知f(a)>1,则实数a的取值范围是(  )
A.(-2,1)B.(-∞,-2)∪(1,+∞)C.(1,+∞)D.(-∞,-1)∪(0,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

13.把函数f(x)=log3x图象关于x轴对称后,再向左平移2个单位,得到新函数g(x)的解析式为(  )
A.g(x)=log3(-x+2)B.g(x)=-log3(x-2)C.g(x)=log3(-x-2)D.g(x)=-log3(x+2)

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知曲线C的极坐标方程是ρ=2,以极点为原点,以极轴为x轴的正半轴,取相同的单位长度,建立平面直角坐标系,直线l的参数方程为$\left\{\begin{array}{l}{x=2-\frac{1}{2}t}\\{y=1+\frac{\sqrt{3}}{2}t}\end{array}$(t为参数).
(Ⅰ)写出直线l的普通方程与曲线C的直角坐标方程;
(Ⅱ)设曲线C经过伸缩变换$\left\{\begin{array}{l}{x′=x}\\{y′=2y}\end{array}$得到曲线C′,曲线C′上任一点为M(x0,y0),求$\sqrt{3}{x}_{0}$+$\frac{1}{2}{y}_{0}$的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知m,n都是实数,m≠0,f(x)=|x-1|+|x-2|.
(Ⅰ)若f(x)>2,求实数x的取值范围;
(Ⅱ)若|m+n|+|m-n|≥|m|f(x)对满足条件的所有m,n都成立,求实数x的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知数列{an}是公差为正数的等差数列,其前n项和为Sn,且a2•a3=15,S4=16.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{bn}满足b1=a1,${b}_{n+1}-{b}_{n}=\frac{1}{{a}_{n}•{a}_{n+1}}$.
①求数列{bn}的通项公式;
②是否存在正整数m,n(m≠n),使得b2,bm,bn成等差数列?若存在,求出m,n的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案