相关习题
 0  234269  234277  234283  234287  234293  234295  234299  234305  234307  234313  234319  234323  234325  234329  234335  234337  234343  234347  234349  234353  234355  234359  234361  234363  234364  234365  234367  234368  234369  234371  234373  234377  234379  234383  234385  234389  234395  234397  234403  234407  234409  234413  234419  234425  234427  234433  234437  234439  234445  234449  234455  234463  266669 

科目: 来源: 题型:选择题

8.函数f(x)是定义在R上的偶函数,下列说法:
①f(0)=0;
②若f(x)在[0,+∞)上有最小值-1,则f(x)在(-∞,0]上有最大值1;
③若f(x)在[1,+∞)上为增函数,则f(x)在(-∞,-1]上为减函数.
其中正确的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目: 来源: 题型:填空题

7.研究问题:“已知关于x的不等式ax2-bx+c>0,令y=$\frac{1}{x}$,则y∈($\frac{1}{2}$,1),所以不等式cx2-bx+a>0的解集为($\frac{1}{2}$,1)”.类比上述解法,已知关于x的不等式$\frac{k}{x+a}$+$\frac{x+b}{x+c}$<0的解集为(-2,-1)∪(2,3),则关于x的不等式$\frac{kx}{ax-1}$+$\frac{bx-1}{cx-1}$<0的解集为(-$\frac{1}{2}$,-$\frac{1}{3}$)∪($\frac{1}{2}$,1).

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知函数f(x)=log${\;}_{\frac{1}{2}}$(x+a),g(x)=x2+4x-2,函数h(x)=$\left\{\begin{array}{l}{f(x),f(x)≥g(x)}\\{g(x),f(x)<g(x)}\end{array}\right.$,若函数h(x)的最小值为-2,则a=(  )
A.0B.2C.4D.6

查看答案和解析>>

科目: 来源: 题型:解答题

5.(文科)如图,已知椭圆的中心在坐标原点,焦点F1,F2,在x轴上,长轴A1A2的长为4,x轴上一点M(${-\frac{a^2}{c},0}$),$|{\overrightarrow{M{A_1}}}|$=$2|{\overrightarrow{{A_1}{F_1}}}|$.
(1)求椭圆的方程;
(2)过左焦点F1且斜率为1的直线l与椭圆相交于C、D两点,求△OCD的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

4.(1)判断并证明函数f(x)=x+$\frac{4}{x}$的奇偶性;
(2)证明函数f(x)=x+$\frac{4}{x}$在x∈[2,+∞) 上是增函数,并求f(x)在[4,8]上的值域.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知数列{an}的前n项和Sn满足:Sn=2an-3n(n∈N*).
(1)求a1,a2的值,
(2)求证:数列{an+3}是等比数列,并求数列{an}的通项公式;
(3)在数列{Sn}中取出若干项S${\;}_{{n}_{1}}$,S${\;}_{{n}_{2}}$,S${\;}_{{n}_{3}}$,…,S${\;}_{{n}_{k}}$,…,若数列{nk}是等差数列,试判断数列{S${\;}_{{n}_{k}}$}是否为等差数列,并说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{-\frac{1}{2}{x}^{2},x≤1}\\{f(x-2)+\frac{1}{2},x>1}\end{array}\right.$若方程f(x)=a|x-1|,(a∈R)有且仅有两个不相等的实数解,则实数a的取值范围是a≤0或a=3-$\sqrt{7}$或$\frac{1}{8}≤a<\frac{1}{6}$.

查看答案和解析>>

科目: 来源: 题型:解答题

1.用随机模拟法求函数y=$\sqrt{x}$的图象与x轴和直线x=1围成的图形的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

20.求证:
(1)$\frac{1-co{s}^{2}α}{sinα-cosα}$-$\frac{sinα+cosα}{ta{n}^{2}α-1}$=sinα+cosα;
(2)(2-cos2α)(2+tan2α)=(1+2tan2α)(1+cos2α)

查看答案和解析>>

科目: 来源: 题型:填空题

19.直线y=kx与双曲线x2-$\frac{{y}^{2}}{3}$=1无公共点,则k的取值范围为k≤-$\sqrt{3}$或k≥$\sqrt{3}$.

查看答案和解析>>

同步练习册答案