相关习题
 0  234357  234365  234371  234375  234381  234383  234387  234393  234395  234401  234407  234411  234413  234417  234423  234425  234431  234435  234437  234441  234443  234447  234449  234451  234452  234453  234455  234456  234457  234459  234461  234465  234467  234471  234473  234477  234483  234485  234491  234495  234497  234501  234507  234513  234515  234521  234525  234527  234533  234537  234543  234551  266669 

科目: 来源: 题型:选择题

19.若函数f(x)=sin2x向右平移$\frac{π}{6}$个单位后,得到y=g(x),则关于y=g(x)的说法正确的是(  )
A.图象关于点$({-\frac{π}{6},0})$中心对称B.图象关于$x=-\frac{π}{6}$轴对称
C.在区间$[{-\frac{5π}{12},-\frac{π}{6}}]$单调递增D.在$[{-\frac{π}{12},\frac{5π}{12}}]$单调递增

查看答案和解析>>

科目: 来源: 题型:选择题

18.设公差不为零的等差数列{an}的前n项和为Sn,若a4=2(a2+a3),则$\frac{S_7}{a_1}$=(  )
A.-7B.14C.7D.-14

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-3,2),若k$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$垂直,则实数k值为(  )
A.$\frac{1}{4}$B.$-\frac{1}{5}$C.$-\frac{2}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

16.已知集合A=$\left\{{x|{lgx}≤0}\right\},B=\left\{{x|\frac{1}{2}≤x≤3}\right\}$,则A∩B=(  )
A.(0,3]B.(1,2]C.(1,3]D.$[{\frac{1}{2},1}]$

查看答案和解析>>

科目: 来源: 题型:解答题

15.O为原点的直角坐标系中,点A(4,-3)为△OAB的直角顶点,已知AB=2OA,且点B的纵坐标大于0
(1)求$\overrightarrow{AB}$的坐标;
(2)求圆C1:x2-6x+y2+2y=0关于直线OB对称的圆C2的方程;在直线OB上是否存在点P,过点P的任意一条直线如果和圆C1圆C2都相交,则该直线被两圆截得的线段长相等,如果存在求出点P的坐标,如果不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知向量$\overrightarrow{a}$=(-2,1),$\overrightarrow{b}$=(x,y)
(1)若x,y分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足$\overrightarrow{a}$•$\overrightarrow{b}$=-1的概率;
(2)若x,y在连续区间[1,6]上取值,求满足$\overrightarrow{a}$•$\overrightarrow{b}$<0的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知函数f(x)=ax+x2-xlna-b(b∈R,a>0且a≠1),e是自然对数的底数.
(1)讨论函数f(x)在(0,+∞)上的单调性;
(2)当a>1时,若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,求实数a的取值范围.(参考公式:(ax)′=axlna)

查看答案和解析>>

科目: 来源: 题型:解答题

12.设递增的等比数列{an}的前n项和为Sn,已知2(an+an+2)=5an+1,且$a_5^2={a_{10}}$,
(1)求数列{an}通项公式及前n项和为Sn
(2)设${b_n}={S_n}•{log_2}{a_{n+1}}({n∈{N^*}})$,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目: 来源: 题型:填空题

11.已知θ是钝角,且$sinθ=\frac{1}{3}$,则$cos({\frac{π}{2}+2θ})$的值为$\frac{{4\sqrt{2}}}{9}$.

查看答案和解析>>

科目: 来源: 题型:选择题

10.f(x)=$\frac{x}{sinx}({x∈({-π,0})∪({0,π})})$大致的图象是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案